Subspace Hybrid Beamforming for Head-Worn Microphone Arrays

Sina Hafezi, Alastair H. Moore, Pierre Guiraud, Patrick A. Naylor, Jacob Donley, Vladimir Tourbabin, Thomas Lunner

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

A two-stage multi-channel speech enhancement method is proposed which consists of a novel adaptive beamformer, Hybrid Minimum Variance Distortionless Response (MVDR), Isotropic-MVDR (Iso), and a novel multi-channel spectral Principal Components Analysis (PCA) denoising. In the first stage, the Hybrid-MVDR performs multiple MVDRs using a dictionary of pre-defined noise field models and picks the minimum-power outcome, which benefits from the robustness of signal-independent beamforming and the performance of adaptive beamforming. In the second stage, the outcomes of Hybrid and Iso are jointly used in a two-channel PCA-based denoising to remove the 'musical noise' produced by Hybrid beamformer. On a dataset of real 'cocktail-party' recordings with head-worn array, the proposed method outperforms the baseline superdirective beamformer in noise suppression (fwSegSNR, SDR, SIR, SAR) and speech intelligibility (STOI) with similar speech quality (PESQ) improvement.

Original languageEnglish
Title of host publicationICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Proceedings
PublisherInstitute of Electrical and Electronics Engineers
ISBN (Electronic)9781728163277
DOIs
StatePublished - 1 Jan 2023
Externally publishedYes
Event48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023 - Rhodes Island, Greece
Duration: 4 Jun 202310 Jun 2023

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2023-June
ISSN (Print)1520-6149

Conference

Conference48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
Country/TerritoryGreece
CityRhodes Island
Period4/06/2310/06/23

Keywords

  • augmented reality
  • beamforming
  • eigenvalue decomposition
  • microphone arrays
  • subspace

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Subspace Hybrid Beamforming for Head-Worn Microphone Arrays'. Together they form a unique fingerprint.

Cite this