Surface and bulk dissolution properties, and selectivity of DNA-linked nanoparticle assemblies

D. B. Lukatsky, Daan Frenkel

Research output: Contribution to journalArticlepeer-review

32 Scopus citations


Using a simple mean-field model, we analyze the surface and bulk dissolution properties of DNA-linked nanoparticle assemblies. We find that the dissolution temperature and the sharpness of the dissolution profiles increase with the grafting density of the single-stranded DNA "probes" on the surface of colloids. The surface grafting density is controlled by the linker occupation number, in analogy with quantum particles obeying fractional statistics. The dissolution temperature increases logarithmically with the salt concentration. This is in agreement with the experimental findings [R. Jin, G. Wu, Z. Li, C. A. Mirkin, and G. C. Schatz, J. Am. Chem. Soc. 125, 1643 (2003)]. By exploiting the unique phase behavior of DNA-coated colloids, it should be possible to detect multiple "targets" in a single experiment by essentially mapping the DNA base-pair sequence onto the phase behavior of DNA-linked nanoparticle solution.

Original languageEnglish
Article number214904
JournalJournal of Chemical Physics
Issue number21
StatePublished - 1 Jun 2005
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy (all)
  • Physical and Theoretical Chemistry


Dive into the research topics of 'Surface and bulk dissolution properties, and selectivity of DNA-linked nanoparticle assemblies'. Together they form a unique fingerprint.

Cite this