Surface oxidation of TiNiSn (half-Heusler) alloy by oxygen and water vapor

Oshrat Appel, Shai Cohen, Ofer Beeri, Noah Shamir, Yaniv Gelbstein, Shimon Zalkind

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

TiNiSn-based half-Heusler semiconducting compounds have the highest potential as n-type thermoelectric materials for the use at elevated temperatures. In order to use these compounds in a thermoelectric module, it is crucial to examine their behaviour at a working temperature (approximately 1000 K) under oxygen and a humid atmosphere. Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were utilized to study the surface composition and oxidation of the TiNiSn alloy at elevated temperatures. It was found that during heating in vacuum, Sn segregates to the surface. Exposing the alloy to oxygen at room temperature will cause surface oxidation of Ti to TiO2 and Ti2O3 and some minor oxidation of Sn. Oxidation at 1000 K induces Ti segregation to the surface, creating a titanium oxide layer composed of mainly TiO2 as well as Ti2O3 and TiO. Water vapor was found to be a weaker oxidative gas medium compared to oxygen.

Original languageEnglish
Article number2296
JournalMaterials
Volume11
Issue number11
DOIs
StatePublished - 15 Nov 2018

Keywords

  • Half-Heusler
  • Oxygen
  • Segregation
  • Surface oxidation
  • Thermoelectric
  • TiNiSn
  • Water vapor
  • XPS

ASJC Scopus subject areas

  • Materials Science (all)
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Surface oxidation of TiNiSn (half-Heusler) alloy by oxygen and water vapor'. Together they form a unique fingerprint.

Cite this