Abstract
Biotin was covalently coupled with alginate in an aqueous-phase reaction by means of carbodiimide-mediated activation chemistry to provide a biotin-alginate conjugate for subsequent use in biosensor applications. The synthetic procedure was optimized with respect to pH of the reaction medium (pH 6.0), the degree of uronic acid activation (20%), and the order of addition of the reagents. The biotin-alginate conjugate was characterized by titration with 2-anilinonaphthalene-6-sulfonic acid (2,6-ANS), 4-hydroxyazobene-2′-carboxylic acid (HABA) and by an HPSEC-MALLS analytical method as well as by FTIR and 13C NMR spectroscopy. As a compromise between the need for a high percent of molar modification of the alginate, on one hand, and sufficient gelling capability, on the other hand, an optimal modification of 10-13% of biotin-alginate was used. The new biotin-alginate conjugate was used for the encapsulation of bioluminescent reporter cells into microspheres. A biosensor was prepared by conjugating these biotinylated alginate microspheres to the surface of a streptavidin-coated optical fiber, and the performance of the biosensor was demonstrated in the determination of the antibiotic, mitomycin C as a model toxin.
Original language | English |
---|---|
Pages (from-to) | 389-396 |
Number of pages | 8 |
Journal | Biomacromolecules |
Volume | 5 |
Issue number | 2 |
DOIs | |
State | Published - 1 Mar 2004 |
ASJC Scopus subject areas
- Bioengineering
- Biomaterials
- Polymers and Plastics
- Materials Chemistry