Synthesis of dense B4C-SiC-TIB2 composites

S. Hayun, N. Frage, H. Dilman, V. Tourbabin, M. P. Dariel

Research output: Contribution to journalConference articlepeer-review

15 Scopus citations


The present communication is concerned with the fabrication of a composite material consisting of a two-phase ceramic skeleton, i.e. boron carbide and in situ generated titanium diboride with excess free carbon, reaction bonded to silicon carbide that was formed subsequently to the infiltration of the skeleton with molten silicon. The material displays high rigidity, extremely high hardness and low density, providing potential for applications ranging from light armor to precision machining equipment. Its advantage resides in the significantly lower sintering temperature than is necessary for pressureless sintering of boron carbide. The advantage of this approach resides in the several degrees of freedom that allow some latitude in designing required properties.

Original languageEnglish
Pages (from-to)37-44
Number of pages8
JournalCeramic Transactions
StatePublished - 14 Mar 2006
Event107th Annual Meeting of the American Ceramic Society - Baltimore, MD, United States
Duration: 10 Apr 200513 Apr 2005

ASJC Scopus subject areas

  • Ceramics and Composites
  • Materials Chemistry


Dive into the research topics of 'Synthesis of dense B4C-SiC-TIB2 composites'. Together they form a unique fingerprint.

Cite this