Abstract
Teleoperation enables a user to perform dangerous tasks (e.g., work in disaster zones or in chemical plants) from a remote location. Nevertheless, common approaches often provide cumbersome and unnatural usage. In this letter, we propose TeleFMG, an approach for teleoperation of a multi-finger robotic hand through natural motions of the user's hand. By using a low-cost wearable Force-Myography (FMG) device, musculoskeletal activities on the user's forearm are mapped to hand poses which, in turn, are mimicked by a robotic hand. The mapping is performed by a spatio-temporal data-based model based on the Temporal Convolutional Network. The model considers spatial positions of the sensors on the forearm along with temporal dependencies of the FMG signals. A set of experiments show the ability of a teleoperator to control a multi-finger hand through intuitive and natural finger motion. A robot is shown to successfully mimic the user's hand in object grasping and gestures. Furthermore, transfer to a new user is evaluated while showing that fine-tuning with a limited amount of new data significantly improves accuracy.
Original language | English |
---|---|
Pages (from-to) | 2933-2940 |
Number of pages | 8 |
Journal | IEEE Robotics and Automation Letters |
Volume | 9 |
Issue number | 3 |
DOIs | |
State | Published - 1 Mar 2024 |
Externally published | Yes |
Keywords
- Telerobotics and teleoperation
- multifingered hands
ASJC Scopus subject areas
- Control and Systems Engineering
- Biomedical Engineering
- Human-Computer Interaction
- Mechanical Engineering
- Computer Vision and Pattern Recognition
- Computer Science Applications
- Control and Optimization
- Artificial Intelligence