TY - JOUR
T1 - Temperature Shift Between Vineyards Modulates Berry Phenology and Primary Metabolism in a Varietal Collection of Wine Grapevine
AU - Gashu, Kelem
AU - Sikron Persi, Noga
AU - Drori, Elyashiv
AU - Harcavi, Eran
AU - Agam, Nurit
AU - Bustan, Amnon
AU - Fait, Aaron
N1 - Funding Information:
Qualitative and Quantitative Data Analysis-Mass Hunter Workstation Software (Agilent Technologies, Santa Clara, CA, United States) was used for integration of peak area and data analysis. Metabolite annotation was performed based on spectral searching supported by the National Institute of Standards and Technology (NIST, Gaithersburg, MA, United States) against RI libraries from the Max Planck Institute for Plant Physiology (Golm, Germany) and finally normalized by the internal standard sorbitol 6C13 (Cortecnet Corporation, Mill Valley, CA, United States) and pulp dry weight.
Funding Information:
This project was partially supported by the Chief Scientist Fund of the Israeli Ministry of Agriculture and the Israeli Wine Grapevine Board (Grant No. 29-01-0007).
Funding Information:
We would like to thank Destayehu Semaneh, Chao Song, Alon Shlisser, Dong Shuo, Khadijah Ayarnah, Yaara Zohar, Dr. Noam Reshef, Dr. Moses Kwame, Mais Dzhafarov, Angelica Shapiro, Tania Acuna, Maria Dolores, Millena Oliveira, BichThao Nguyen, and David for their support in the field and lab. Funding. This project was partially supported by the Chief Scientist Fund of the Israeli Ministry of Agriculture and the Israeli Wine Grapevine Board (Grant No. 29-01-0007).
Publisher Copyright:
© Copyright © 2020 Gashu, Sikron Persi, Drori, Harcavi, Agam, Bustan and Fait.
PY - 2020/12/17
Y1 - 2020/12/17
N2 - Global climate change and the expected increase in temperature are altering the relationship between geography and grapevine (V. vinifera) varietal performance, and the implications of which are yet to be fully understood. We investigated berry phenology and biochemistry of 30 cultivars, 20 red and 10 white, across three seasons (2017–2019) in response to a consistent average temperature difference of 1.5°C during the growing season between two experimental sites. The experiments were conducted at Ramat Negev (RN) and Ramon (MR) vineyards, located in the Negev desert, Israel. A significant interaction between vineyard location, season, and variety affected phenology and berry indices. The warmer RN site was generally associated with an advanced phenological course for the white cultivars, which reached harvest up to 2 weeks earlier than at the MR site. The white cultivars also showed stronger correlation between non-consecutive phenological stages than did the red ones. In contrast, harvest time of red cultivars considerably varied according to seasons and sites. Warmer conditions extended fruit developmental phases, causing berry shriveling and cluster collapse in a few cultivars such as Pinot Noir, Ruby Cabernet, and Tempranillo. Analyses of organic acid content suggested differences between red and white cultivars in the content of malate, tartrate, and citrate in response to the temperature difference between sites. However, generally, cultivars at lower temperatures exhibited lower concentrations of pulp organic acids at véraison, but acid degradation until harvest was reduced, compared to the significant pace of acid decline at the warmer site. Sugars showed the greatest differences between sites in both white and red berries at véraison, but differences were seasonal dependent. At harvest, cultivars of both groups exhibited significant variation in hexose/sucrose ratio, and the averages of which varied from 1.6 to 2.9. Hexose/sucrose ratio was significantly higher among the red cultivars at the warmer RN, while this tendency was very slight among white cultivars. White cultivars seem to harbor a considerable degree of resilience due to a combination of earlier and shorter ripening phase, which avoids most of the summer heat. Taken together, our study demonstrates that the extensive genetic capacity of V. vinifera bears significant potential and plasticity to withstand the temperature increase associated with climate change.
AB - Global climate change and the expected increase in temperature are altering the relationship between geography and grapevine (V. vinifera) varietal performance, and the implications of which are yet to be fully understood. We investigated berry phenology and biochemistry of 30 cultivars, 20 red and 10 white, across three seasons (2017–2019) in response to a consistent average temperature difference of 1.5°C during the growing season between two experimental sites. The experiments were conducted at Ramat Negev (RN) and Ramon (MR) vineyards, located in the Negev desert, Israel. A significant interaction between vineyard location, season, and variety affected phenology and berry indices. The warmer RN site was generally associated with an advanced phenological course for the white cultivars, which reached harvest up to 2 weeks earlier than at the MR site. The white cultivars also showed stronger correlation between non-consecutive phenological stages than did the red ones. In contrast, harvest time of red cultivars considerably varied according to seasons and sites. Warmer conditions extended fruit developmental phases, causing berry shriveling and cluster collapse in a few cultivars such as Pinot Noir, Ruby Cabernet, and Tempranillo. Analyses of organic acid content suggested differences between red and white cultivars in the content of malate, tartrate, and citrate in response to the temperature difference between sites. However, generally, cultivars at lower temperatures exhibited lower concentrations of pulp organic acids at véraison, but acid degradation until harvest was reduced, compared to the significant pace of acid decline at the warmer site. Sugars showed the greatest differences between sites in both white and red berries at véraison, but differences were seasonal dependent. At harvest, cultivars of both groups exhibited significant variation in hexose/sucrose ratio, and the averages of which varied from 1.6 to 2.9. Hexose/sucrose ratio was significantly higher among the red cultivars at the warmer RN, while this tendency was very slight among white cultivars. White cultivars seem to harbor a considerable degree of resilience due to a combination of earlier and shorter ripening phase, which avoids most of the summer heat. Taken together, our study demonstrates that the extensive genetic capacity of V. vinifera bears significant potential and plasticity to withstand the temperature increase associated with climate change.
KW - Vitis vinifera
KW - arid viticulture
KW - climate change
KW - organic acids
KW - phenological phase
KW - primary metabolism
KW - sugars
UR - http://www.scopus.com/inward/record.url?scp=85098643840&partnerID=8YFLogxK
U2 - 10.3389/fpls.2020.588739
DO - 10.3389/fpls.2020.588739
M3 - Article
C2 - 33391301
AN - SCOPUS:85098643840
VL - 11
JO - Frontiers in Plant Science
JF - Frontiers in Plant Science
SN - 1664-462X
M1 - 588739
ER -