Template-Free Formation of Regular Macroporosity in Carbon Materials Made from a Folded Polymer Precursor

Tomer Y. Burshtein, Iris Agami, Matan Sananis, Charles E. Diesendruck, David Eisenberg

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Porous carbon materials attract great interest in a wide range of applications such as batteries, fuel cells, and membranes, due to their large surface area, structural and compositional tunability, and chemical stability. While micropores are typically obtained when preparing carbon materials by pyrolysis, the fabrication of mesoporous, and especially macroporous carbons is more challenging, yet important for enhancing mass transport. Herein, template-free regular macroporous carbons are prepared from a mixture of unfolded (linear) and folded (single-chain nanoparticles, SCNP) polyvinylpyrrolidone chains. While having the same chemical composition, the different molecular architectures lead to phase separation even before pyrolysis, creating a dense cell architecture, which is retained upon carbonization. Upon increasing the SCNP content, the homogeneity of the pore network increases and the specific surface area is enlarged 3-5-fold, until ideal properties are obtained at 75% SCNP, as observed by high-resolution scanning electron microscopy and N2 physisorption porosimetry. The materials are further investigated as hydrazine oxidation electrocatalysts, demonstrating the link between the evolving morphology and current density. Importantly, this study demonstrates the role of polymer architecture in macroporosity templating in carbon materials, providing a new approach to develop complex carbon architectures without the need for external templating.

Original languageEnglish
Article number2100712
JournalSmall
Volume17
Issue number24
DOIs
StatePublished - 1 Jun 2021
Externally publishedYes

Keywords

  • SCNP
  • folding
  • hydrazine oxidation
  • macroporosity
  • porous carbons

ASJC Scopus subject areas

  • Biotechnology
  • General Chemistry
  • Biomaterials
  • General Materials Science
  • Engineering (miscellaneous)

Fingerprint

Dive into the research topics of 'Template-Free Formation of Regular Macroporosity in Carbon Materials Made from a Folded Polymer Precursor'. Together they form a unique fingerprint.

Cite this