The basis for rootstock resilient to capnodis species: Screening for genes encoding δ-endotoxins from Bacillus thuringiensis

Galina Gindin, Zvi Mendel, Bella Levitin, Pradeep Kumar, Tal Levi, Preeti Shahi, Vadim Khasdan, Dan Weinthal, Tatiana Kuznetsova, Monica Einav, Ariel Kushmaro, Alex Protasov, Arieh Zaritsky, Eitan Ben-Dov

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

BACKGROUND: Conventional methods often fail to control the flatheaded borers Capnodis spp., major pests of stone fruit trees; the larvae are protected from insecticides and predation because they feed deep in the roots. A potential solution is transgenic trees producing in their roots toxic compounds such as Cry proteins of Bacillus thuringiensis (Bt). RESULTS: Toxicities against Capnodis larvae were demonstrated by exploiting a recently designed artificial larval diet and an available collection of field isolated Bt. An isolate of Bt tenebrionis (Btt) from commercial bioinsecticide (Novodor) displayed LC50 and LC95 values of 3.2 and 164mg g-1, respectively, against neonates of Capnodis tenebrionis, whereas values of the most toxic field isolate K-7 were 1.9 and 25.6mg g-1 respectively. Weights of surviving larvae after 1month on diets containing low concentrations of K-7 (0.1-1.0mg g-1) were lower than on Btt or untreated larvae. K-7 was also toxic against larvae of C. cariosa and C. miliaris and found to harbour genes encoding Cry9Ea-like and Cry23Aa/Cry37Aa binary toxins. CONCLUSION: Larvae of Capnodis spp. are susceptible to Bt Cry toxins. Expressing cry genes active against these pests thus seems a feasible solution towards production of transgenic rootstock trees resilient to the pest.

Original languageEnglish
Pages (from-to)1283-1290
Number of pages8
JournalPest Management Science
Volume70
Issue number8
DOIs
StatePublished - 1 Jan 2014

Keywords

  • Bacillus thuringiensis toxins
  • Biological control
  • Capnodis spp
  • Integrated pest management
  • Rootstock
  • cry genes

Fingerprint

Dive into the research topics of 'The basis for rootstock resilient to capnodis species: Screening for genes encoding δ-endotoxins from <i>Bacillus thuringiensis</i>'. Together they form a unique fingerprint.

Cite this