The capacity region of a class of deterministic state-dependent Z-interference channels

Ritesh Kolte, Ayfer Ozgur, Haim Permuter

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

We consider the problem of communicating over the state-dependent Z-interference channel (S-D Z-IC), when the state is known noncausally only to the interfering transmitter. We present an achievability scheme and show that it is optimal for the injective deterministic S-D Z-IC. This scheme is simple in the sense that it does not involve rate-splitting. The idea of the scheme is that the interfering transmitter chooses its signal to be jointly typical with an auxilary coordination codebook that allows the unintended receiver to partly decode the resultant interference. We then investigate the special case of the modulo-additive S-D Z-IC in detail and show that in this case standard Gelfand-Pinsker coding for the interfering link and treating interference as noise at the second link is optimal. We also extend our main result to the deterministic state-dependent Z-channel (S-D Z-C) in which an additional message is transmitted on the cross-link.

Original languageEnglish
Title of host publication2014 IEEE International Symposium on Information Theory, ISIT 2014
PublisherInstitute of Electrical and Electronics Engineers
Pages656-660
Number of pages5
ISBN (Print)9781479951864
DOIs
StatePublished - 1 Jan 2014
Event2014 IEEE International Symposium on Information Theory, ISIT 2014 - Honolulu, HI, United States
Duration: 29 Jun 20144 Jul 2014

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095

Conference

Conference2014 IEEE International Symposium on Information Theory, ISIT 2014
Country/TerritoryUnited States
CityHonolulu, HI
Period29/06/144/07/14

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'The capacity region of a class of deterministic state-dependent Z-interference channels'. Together they form a unique fingerprint.

Cite this