The case for a low extragalactic gamma-ray background

Uri Keshet, Eli Waxman, Abraham Loeb

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

Measurements of the diffuse extragalactic γ-ray background (EGRB) are complicated by a strong Galactic foreground. Estimates of the EGRB flux and spectrum, obtained by modelling the Galactic emission, have produced a variety of (sometimes conflicting) results. The latest analysis of the EGRET data found an isotropic flux Ix = 1.45 ±0.05 above 100 MeV, in units of 10-5 ph s-1 cm-2 sr-1. We analyse the EGRET data in search of robust constraints on the EGRB flux, finding the γ-ray sky strongly dominated by Galactic foreground even at high latitudes, with no conclusive evidence for an additional isotropic component. The γ-ray intensity measured towards the Galactic poles is similar to or lower than previous estimates of Ix, even before Galactic foreground subtraction. The high-latitude profile of the γ-ray data is disc-like for 40° ≲ |b| ≲ 70°, and even steeper for |b| ≳ 70°; overall it exhibits strong Galactic features and is well fit by a simple Galactic model. Based on the |b| > 40° data we find that Ix < 0.5 at a 99% confidence level, with evidence for a much lower flux. We show that correlations with Galactic tracers, previously used to identify the Galactic foreground and estimate Ix, are not satisfactory; the results depend on the tracers used and on the part of the sky examined, because the Galactic emission is not linear in the Galactic tracers, and exhibits spectral variations across the sky. The low EGRB flux favoured by our analysis places stringent limits on extragalactic scenarios involving γ-ray emission, such as radiation from blazars, intergalactic shocks and production of ultra-high-energy cosmic rays and neutrinos. We suggest methods by which future γ-ray missions such as GLAST and AGILE could indirectly identify the EGRB.

Original languageEnglish
Pages (from-to)95-137
Number of pages43
JournalJournal of Cosmology and Astroparticle Physics
Issue number4
DOIs
StatePublished - 1 Apr 2004
Externally publishedYes

Keywords

  • Cosmic rays
  • High energy photons
  • Ultra high energy cosmic rays
  • Ultra high energy photons and neutrinos

Fingerprint

Dive into the research topics of 'The case for a low extragalactic gamma-ray background'. Together they form a unique fingerprint.

Cite this