The Case of Missed Cancers: Applying AI as a Radiologist’s Safety Net

Michal Chorev, Yoel Shoshan, Adam Spiro, Shaked Naor, Alon Hazan, Vesna Barros, Iuliana Weinstein, Esma Herzel, Varda Shalev, Michal Guindy, Michal Rosen-Zvi

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    4 Scopus citations

    Abstract

    We investigate the potential contribution of an AI system as a safety net application for radiologists in breast cancer screening. As a safety net, the AI alerts on cases suspected to be malignant which the radiologist did not recommend for a recall. We analyzed held-out data of 2,638 exams enriched with 90 missed cancers. In screening mammography settings, we show that a system alerting on 11 out of every 1,000 cases, could detect up to 10.7% of the radiologists’ missed cancers. Thus, significantly increasing radiologist’s sensitivity to 80.3%, while only slightly decreasing their specificity to 95.3%. Importantly, the safety net demonstrated a significant contribution to their performance even when radiologists utilized both mammography and ultrasound images. In those settings, it would have alerted 8.5 times per 1,000 cases, and detected 11.7% of the radiologists’ missed cancers. In an analysis of the missed cancers by an expert, we found that most of the cancers detected by the AI were visible post-hoc. Finally, we performed a reader study with five radiologists over 120 exams, 10 of which were originally missed cancers. The AI safety net was able to assist 3 out of the 5 radiologists in detecting missed cancers without raising any false alerts.

    Original languageEnglish
    Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings
    EditorsAnne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz
    PublisherSpringer Science and Business Media Deutschland GmbH
    Pages220-229
    Number of pages10
    ISBN (Print)9783030597245
    DOIs
    StatePublished - 1 Jan 2020
    Event23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 - Lima, Peru
    Duration: 4 Oct 20208 Oct 2020

    Publication series

    NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    Volume12266 LNCS
    ISSN (Print)0302-9743
    ISSN (Electronic)1611-3349

    Conference

    Conference23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
    Country/TerritoryPeru
    CityLima
    Period4/10/208/10/20

    Keywords

    • Breast imaging
    • Computer-aided diagnosis
    • Deep learning

    ASJC Scopus subject areas

    • Theoretical Computer Science
    • General Computer Science

    Fingerprint

    Dive into the research topics of 'The Case of Missed Cancers: Applying AI as a Radiologist’s Safety Net'. Together they form a unique fingerprint.

    Cite this