The complexity of high-dimensional cuts

Ulrich Bauer, Abhishek Rathod, Meirav Zehavi

Research output: Working paper/PreprintPreprint

Abstract

Cut problems form one of the most fundamental classes of problems in algorithmic graph theory. For instance, the minimum cut, the minimum s-t cut, the minimum multiway cut, and the minimum k-way cut are some of the commonly encountered cut problems. Many of these problems have been extensively studied over several decades. In this paper, we initiate the algorithmic study of some cut
problems in high dimensions. The first problem we study, namely, Topological Hitting Set (THS), is defined as follows: Given a nontrivial r-cycle ζ in a simplicial complex K, find a set S of r-dimensional simplices of minimum cardinality so that S meets every cycle homologous to ζ. Our main result is that this problem admits a polynomial time solution on triangulations of closed surfaces. Interestingly, the
optimal solution is given in terms of the cocycles of the surface. For general complexes, we show that THS is W[1]-hard with respect to the solution size k. On the positive side, we show that THS admits an FPT algorithm with respect to k + d, where d is the maximum degree of the Hasse graph of the complex K. We also define a problem called Boundary Nontrivialization (BNT): Given a bounding rcycle ζ in a simplicial complex K, find a set S of (r+ 1)-dimensional simplices of minimum cardinality so that the removal of S from K makes ζ non-bounding. We show that BNT is W[1]-hard with respect to the solution size as the parameter, and has an O(log n)-approximation FPT algorithm for (r + 1)-dimensional complexes with the (r + 1)-th Betti number βr+1 as the parameter.
Finally, we provide randomized (approximation) FPT algorithms for the global variants of THS and BNT.
Original languageEnglish
DOIs
StatePublished - Sep 2021

Fingerprint

Dive into the research topics of 'The complexity of high-dimensional cuts'. Together they form a unique fingerprint.

Cite this