TY - CHAP

T1 - The cushion problem

AU - Borchers, Hans Jürgen

AU - Sen, Rathindra Nath

PY - 2006/12/1

Y1 - 2006/12/1

N2 - The cushion problem is the following. Let M be an order complete space,1 U ⊂ M a D-set, a, b ∈ U, a ≪ b and p,q ∈ βI[a, b] such that a, b, p, q are not coplanar, for example as in Fig. 9.1. Let ξ ∈ l[a, p] and η ∈ l[a, q]. Then there exist points ξ′ ∈ l[q, b] and η′ ∈ l[p, b] such that λ(ξ, ξ′) and λ(η, η′).

AB - The cushion problem is the following. Let M be an order complete space,1 U ⊂ M a D-set, a, b ∈ U, a ≪ b and p,q ∈ βI[a, b] such that a, b, p, q are not coplanar, for example as in Fig. 9.1. Let ξ ∈ l[a, p] and η ∈ l[a, q]. Then there exist points ξ′ ∈ l[q, b] and η′ ∈ l[p, b] such that λ(ξ, ξ′) and λ(η, η′).

UR - http://www.scopus.com/inward/record.url?scp=33847264838&partnerID=8YFLogxK

U2 - 10.1007/3-540-37681-X_9

DO - 10.1007/3-540-37681-X_9

M3 - Chapter

AN - SCOPUS:33847264838

SN - 3540376801

SN - 9783540376804

T3 - Lecture Notes in Physics

SP - 129

EP - 135

BT - Mathematical Implications of Einstein-Weyl Causality

ER -