Abstract
Diagram methods are applied for evaluating the ac effective conductivity σ*(ω) of a disordered semiconductor (e.g., a highly doped compensated semiconductor, a composite, etc.). Expressions for σ*(ω) are obtained in a number of approximations — the cumulant approximation, the self‐consistent moment approximation, and the effective medium approximation. For a random binary mixture which consists of two materials with conductivities σ1 and σ2, the dependences of real and imaginary parts of σ*(ω) on the frequency ω of the external electric field, volume fraction x of the most conducting material and the ratio of the conductivities σ2/σ1 are presented for all approximations mentioned. For a metal‐insulator mixture (σ2 = 0) on the onset of percolation the cumulant and effective medium approximations predict the following behaviour of σ MI*(ω): σ MI*(0) ∼ (x — xc)t, σ MI*(ω) ∼ ωs, here t = 1, s = 1/2. The results, obtained for σ MI*(ω) are compared with those of computer simulation in the model of fully penetrating spheres (Balberg and Binenbaum). The cumulant approximation is in good agreement with the computer results.
Original language | English |
---|---|
Pages (from-to) | 491-503 |
Number of pages | 13 |
Journal | physica status solidi (b) |
Volume | 169 |
Issue number | 2 |
DOIs | |
State | Published - 1 Jan 1992 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics