Abstract
Radio-frequency (RF) carpets with ultra-fine pitches are examined for ion transport in gases at atmospheric pressures and above. We develop new analytic and computational methods for modeling RF ion transport at densities where dynamics are strongly influenced by buffer gas collisions. An analytic description of levitating and sweeping forces from phased arrays is obtained, then thermodynamic and kinetic principles are used to calculate ion loss rates in the presence of collisions. This methodology is validated against detailed microscopic SIMION simulations. We then explore a parameter space of special interest for neutrinoless double beta decay experiments: transport of barium ions in xenon at pressures from 1 to 10 bar. Our computations account for molecular ion formation and pressure dependent mobility as well as finite temperature effects. We discuss the challenges associated with achieving suitable operating conditions, which lie beyond the capabilities of existing devices, using presently available or near-future manufacturing techniques.
Original language | English |
---|---|
Article number | 167000 |
Journal | Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |
Volume | 1039 |
DOIs | |
State | Published - 11 Sep 2022 |
Keywords
- Barium tagging
- Ion transport
- Neutrinoless double beta decay
- RF carpets
ASJC Scopus subject areas
- Nuclear and High Energy Physics
- Instrumentation
Fingerprint
Dive into the research topics of 'The dynamics of ions on phased radio-frequency carpets in high pressure gases and application for barium tagging in xenon gas time projection chambers'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 1039, 167000, 11.09.2022.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - The dynamics of ions on phased radio-frequency carpets in high pressure gases and application for barium tagging in xenon gas time projection chambers
AU - Jones, B. J.P.
AU - Raymond, A.
AU - Woodruff, K.
AU - Byrnes, N.
AU - Denisenko, A. A.
AU - Foss, F. W.
AU - Navarro, K.
AU - Nygren, D. R.
AU - Vuong, T. T.
AU - Adams, C.
AU - Almazán, H.
AU - Álvarez, V.
AU - Aparicio, B.
AU - Aranburu, A. I.
AU - Arazi, L.
AU - Arnquist, I. J.
AU - Ayet, S.
AU - Azevedo, C. D.R.
AU - Bailey, K.
AU - Ballester, F.
AU - Benlloch-Rodríguez, J. M.
AU - Borges, F. I.G.M.
AU - Bounasser, S.
AU - Cárcel, S.
AU - Carrión, J. V.
AU - Cebrián, S.
AU - Church, E.
AU - Conde, C. A.N.
AU - Contreras, T.
AU - Cossío, F. P.
AU - Díaz, G.
AU - Díaz, J.
AU - Dickel, T.
AU - Escada, J.
AU - Esteve, R.
AU - Fahs, A.
AU - Felkai, R.
AU - Fernandes, L. M.P.
AU - Ferrario, P.
AU - Ferreira, A. L.
AU - Freitas, E. D.C.
AU - Freixa, Z.
AU - Generowicz, J.
AU - Goldschmidt, A.
AU - Gómez-Cadenas, J. J.
AU - González, R.
AU - González-Díaz, D.
AU - Guenette, R.
AU - Gutiérrez, R. M.
AU - Haefner, J.
AU - Hafidi, K.
AU - Hauptman, J.
AU - Henriques, C. A.O.
AU - Morata, J. A.Hernando
AU - Herrero-Gómez, P.
AU - Herrero, V.
AU - Ho, J.
AU - Ifergan, Y.
AU - Kekic, M.
AU - Labarga, L.
AU - Laing, A.
AU - Lebrun, P.
AU - Gutierrez, D. Lopez
AU - López-March, N.
AU - Losada, M.
AU - Mano, R. D.P.
AU - Martín-Albo, J.
AU - Martínez, A.
AU - Martínez-Lema, G.
AU - Martínez-Vara, M.
AU - McDonald, A. D.
AU - Meziani, Z. E.
AU - Mistry, K.
AU - Monrabal, F.
AU - Monteiro, C. M.B.
AU - Mora, F. J.
AU - Vidal, J. Muñoz
AU - Novella, P.
AU - Oblak, E.
AU - Odriozola-Gimeno, M.
AU - Palmeiro, B.
AU - Para, A.
AU - Pérez, J.
AU - Querol, M.
AU - Redwine, A. B.
AU - Renner, J.
AU - Ripoll, L.
AU - Rivilla, I.
AU - García, Y. Rodríguez
AU - Rodríguez, J.
AU - Rogero, C.
AU - Rogers, L.
AU - Romeo, B.
AU - Romo-Luque, C.
AU - Santos, F. P.
AU - dos Santos, J. M.F.
AU - Simón, A.
AU - Sorel, M.
AU - Stanford, C.
AU - Teixeira, J. M.R.
AU - Thapa, P.
AU - Toledo, J. F.
AU - Torrent, J.
AU - Usón, A.
AU - Veloso, J. F.C.A.
AU - Webb, R.
AU - Weiss-Babai, R.
AU - White, J. T.
AU - Yahlali, N.
N1 - Funding Information: We thank Ben Smithers and Jackie Baeza Rubio for careful proof-reading, and Yuan Mei for thoughtful suggestions which were incorporated into the draft. The University of Texas at Arlington NEXT group is supported by the Department of Energy, USA under Early Career Award number DE-SC0019054 (BJPJ), by Department of Energy, USA Award DE-SC0019223 (DRN), the National Science Foundation, USA under award number NSF CHE 2004111 (FWF), and the Robert A Welch Foundation , Y-2031-20200401 (FWF). The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT ; the European Union’s Framework Programme for Research and Innovation Horizon 2020 (2014–2020) under the Grant Agreements No. 674896 , 690575 and 740055 ; the Ministerio de Economía Competitividad and the Ministerio de Ciencia, Innovación Universidades of Spain under grants FIS2014-53371-C04 , RTI2018-095979 , the Severo Ochoa Program grants SEV-2014-0398 and CEX2018-000867-S , and the María de Maeztu Program MDM-2016-0692 ; from Fundacion Bancaria la Caixa (ID 100010434), grant code LCF/BQ/PI19/11690012 ; the Generalitat Valenciana of Spain under grants PROMETEO/2016/120 and SEJI/2017/011 ; the Portuguese FCT under project PTDC/FIS-NUC/2525/2014 and under projects UID/FIS/04559/2020 to fund the activities of LIBPhys-UC ; the Pazy Foundation (Israel) under grants 877040 and 877041 ; the US Department of Energy under contracts number DE-AC02-06CH11357 ( Argonne National Laboratory, USA ), DE-AC02-07CH11359 ( Fermi National Accelerator Laboratory ), DE-FG02-13ER42020 (Texas A&M). DGD acknowledges support from the Ramón Cajal program (Spain) under contract number RYC-2015-18820 . JM-A acknowledges support from Fundación Bancaria la Caixa (ID 100010434), grant code LCF/BQ/PI19/11690012 , and from the Plan GenT program of the Generalitat Valenciana , grant code CIDEGENT/2019/049 . Finally, we are grateful to the Laboratorio Subterráneo de Canfranc for hosting and supporting the NEXT experiment. Funding Information: We thank Ben Smithers and Jackie Baeza Rubio for careful proof-reading, and Yuan Mei for thoughtful suggestions which were incorporated into the draft. The University of Texas at Arlington NEXT group is supported by the Department of Energy, USA under Early Career Award number DE-SC0019054 (BJPJ), by Department of Energy, USA Award DE-SC0019223 (DRN), the National Science Foundation, USA under award number NSF CHE 2004111 (FWF), and the Robert A Welch Foundation, Y-2031-20200401 (FWF). The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014–2020) under the Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Economía y Competitividad and the Ministerio de Ciencia, Innovación y Universidades of Spain under grants FIS2014-53371-C04, RTI2018-095979, the Severo Ochoa Program grants SEV-2014-0398 and CEX2018-000867-S, and the María de Maeztu ProgramMDM-2016-0692; from Fundacion Bancaria la Caixa (ID 100010434), grant code LCF/BQ/PI19/11690012; the Generalitat Valenciana of Spain under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT under project PTDC/FIS-NUC/2525/2014 and under projects UID/FIS/04559/2020 to fund the activities of LIBPhys-UC; the Pazy Foundation (Israel) under grants 877040 and 877041; the US Department of Energy under contracts number DE-AC02-06CH11357 (Argonne National Laboratory, USA), DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020 (Texas A&M). DGD acknowledges support from the Ramón y Cajal program (Spain) under contract number RYC-2015-18820. JM-A acknowledges support from Fundación Bancaria la Caixa (ID 100010434), grant code LCF/BQ/PI19/11690012, and from the Plan GenT program of the Generalitat Valenciana, grant code CIDEGENT/2019/049. Finally, we are grateful to the Laboratorio Subterráneo de Canfranc for hosting and supporting the NEXT experiment. Publisher Copyright: © 2022 Elsevier B.V.
PY - 2022/9/11
Y1 - 2022/9/11
N2 - Radio-frequency (RF) carpets with ultra-fine pitches are examined for ion transport in gases at atmospheric pressures and above. We develop new analytic and computational methods for modeling RF ion transport at densities where dynamics are strongly influenced by buffer gas collisions. An analytic description of levitating and sweeping forces from phased arrays is obtained, then thermodynamic and kinetic principles are used to calculate ion loss rates in the presence of collisions. This methodology is validated against detailed microscopic SIMION simulations. We then explore a parameter space of special interest for neutrinoless double beta decay experiments: transport of barium ions in xenon at pressures from 1 to 10 bar. Our computations account for molecular ion formation and pressure dependent mobility as well as finite temperature effects. We discuss the challenges associated with achieving suitable operating conditions, which lie beyond the capabilities of existing devices, using presently available or near-future manufacturing techniques.
AB - Radio-frequency (RF) carpets with ultra-fine pitches are examined for ion transport in gases at atmospheric pressures and above. We develop new analytic and computational methods for modeling RF ion transport at densities where dynamics are strongly influenced by buffer gas collisions. An analytic description of levitating and sweeping forces from phased arrays is obtained, then thermodynamic and kinetic principles are used to calculate ion loss rates in the presence of collisions. This methodology is validated against detailed microscopic SIMION simulations. We then explore a parameter space of special interest for neutrinoless double beta decay experiments: transport of barium ions in xenon at pressures from 1 to 10 bar. Our computations account for molecular ion formation and pressure dependent mobility as well as finite temperature effects. We discuss the challenges associated with achieving suitable operating conditions, which lie beyond the capabilities of existing devices, using presently available or near-future manufacturing techniques.
KW - Barium tagging
KW - Ion transport
KW - Neutrinoless double beta decay
KW - RF carpets
UR - http://www.scopus.com/inward/record.url?scp=85133273041&partnerID=8YFLogxK
U2 - 10.1016/j.nima.2022.167000
DO - 10.1016/j.nima.2022.167000
M3 - Article
SN - 0168-9002
VL - 1039
JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
M1 - 167000
ER -