The effect of bulky substituents on two π-conjugated mesogenic fluorophores. Their organic polymers and zinc-bridged luminescent networks

Rosita Diana, Barbara Panunzi, Simona Concilio, Francesco Marrafino, Rafi Shikler, Tonino Caruso, Ugo Caruso

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

From a dicyano-phenylenevinylene (PV) and an azobenzene (AB) skeleton, two new symmetrical salen dyes were obtained. Terminal bulky substituents able to reduce intermolecular interactions and flexible tails to guarantee solubility were added to the fluorogenic cores. Photochemical performances were investigated on the small molecules in solution, as neat crystals and as dopants in polymeric matrixes. High fluorescence quantum yield in the orange-red region was observed for the brightest emissive films (88% yield). The spectra of absorption and fluorescence were predicted by Density Functional Theory (DFT) calculations. The predicted energy levels of the frontier orbitals are in good agreement with voltammetry and molecular spectroscopy measures. Employing the two dyes as dopants of a nematic polymer led to remarkable orange or yellow luminescence, which dramatically decreases in on-off switch mode after liquid crystal (LC) order was lost. The fluorogenic cores were also embedded in organic polymers and self-assembly zinc coordination networks to transfer the emission properties to a macro-system. The final polymers emit from red to yellow both in solution and in the solid state and their photoluminescence (PL) performance are, in some cases, enhanced when compared to the fluorogenic cores.

Original languageEnglish
Article number1379
JournalPolymers
Volume11
Issue number9
DOIs
StatePublished - 1 Jan 2019

Keywords

  • Luminescent polymer
  • Polymer network
  • Salen dyes

Fingerprint

Dive into the research topics of 'The effect of bulky substituents on two π-conjugated mesogenic fluorophores. Their organic polymers and zinc-bridged luminescent networks'. Together they form a unique fingerprint.

Cite this