TY - UNPB
T1 - The Effect of Intrinsic Quantum Fluctuations on the Phase Diagram of Anisotropic Dipolar Magnets
AU - Dollberg, Tomer
AU - Andresen, Juan Carlos
AU - Schechter, Moshe
PY - 2022/3/1
Y1 - 2022/3/1
N2 - The rare-earth material $\mathrm{LiHoF_4}$ is believed to be an experimental realization of the celebrated (dipolar) Ising model, and upon the inclusion of a transverse field $B_x$, an archetypal quantum Ising model. Moreover, by substituting the magnetic Ho ions by non-magnetic Y ions, disorder can be introduced into the system giving rise to a dipolar disordered magnet and at high disorders to a spin-glass. Indeed, this material has been scrutinized experimentally, numerically and theoretically over many decades with the aim of understanding various collective magnetic phenomena. One of the to-date open questions is the discrepancy between the experimental and theoretical $B_x -T$ phase diagram at low-fields and high temperatures. Here we propose a mechanism, backed by numerical results, that highlights the importance of quantum fluctuations induced by the off-diagonal dipolar terms, in determining the critical temperature of anisotropic dipolar magnets in the presence and in the absence of a transverse field. We thus show that the description as a simple Ising system is insufficient to quantitatively describe the full phase diagram of $\mathrm{LiHoF_4}$, for the pure as well as for the dilute system.
AB - The rare-earth material $\mathrm{LiHoF_4}$ is believed to be an experimental realization of the celebrated (dipolar) Ising model, and upon the inclusion of a transverse field $B_x$, an archetypal quantum Ising model. Moreover, by substituting the magnetic Ho ions by non-magnetic Y ions, disorder can be introduced into the system giving rise to a dipolar disordered magnet and at high disorders to a spin-glass. Indeed, this material has been scrutinized experimentally, numerically and theoretically over many decades with the aim of understanding various collective magnetic phenomena. One of the to-date open questions is the discrepancy between the experimental and theoretical $B_x -T$ phase diagram at low-fields and high temperatures. Here we propose a mechanism, backed by numerical results, that highlights the importance of quantum fluctuations induced by the off-diagonal dipolar terms, in determining the critical temperature of anisotropic dipolar magnets in the presence and in the absence of a transverse field. We thus show that the description as a simple Ising system is insufficient to quantitatively describe the full phase diagram of $\mathrm{LiHoF_4}$, for the pure as well as for the dilute system.
KW - Condensed Matter - Strongly Correlated Electrons
KW - Condensed Matter - Disordered Systems and Neural Networks
M3 - Preprint
BT - The Effect of Intrinsic Quantum Fluctuations on the Phase Diagram of Anisotropic Dipolar Magnets
ER -