Abstract
Many aeronautical fastners are exposed to cyclic stresses during service. Therefore, such parts are usually designed for limited fatigue lifetime. Various combinations of process type and sequence may be employed to produce threads, each resulting in different fatigue properties. Specifications of aircraft bolts often require production of threads by heat treatment followed by rolling, in order to improve the fatigue properties. Unfortunately, these specifications are not always followed to the letter. Therefore, for either quality assurance or failure analysis purposes, it is important to be able to determine unambigiously the process by which threads were produced. The objectives of this work were to study the effect of varied thread manufacturing process type and sequence on the mechanical properties of AISI 4340 stud bolts, and to develop a laboratory procedure for distinguishing between them. Threads were produced on heat-treated and non-heat-treated stud bolts either by machining or cold-rolling. The non-heat-treated bolts were subsequently heat-treated. All bolts were then subjected to mechanical testing (static tensile. Dynamic fatigue, hardness and microhardness tests), metallographic and fractographic examinations. While the fatigue properties were significantly affected by the manufacturing process used, no effects on the tensile strength of the bolt were observed. Metallographic inspection and microhardness testing, but not fractographic inspection, were found to be effective for distinguishing between different manufacturing procedures.
Original language | English |
---|---|
Pages (from-to) | 227-235 |
Number of pages | 9 |
Journal | Engineering Failure Analysis |
Volume | 8 |
Issue number | 3 |
DOIs | |
State | Published - 1 Jan 2001 |
Keywords
- Aircraft
- Failure analysis
- Fasteners
- Thread rolling
ASJC Scopus subject areas
- General Materials Science
- General Engineering