The leading-edge vortex over a swift-like high-aspect-ratio wing with nonlinear swept-back geometry

Hadar Ben-Gida, Roi Gurka

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

The leading-edge vortex (LEV) is a common flow structure that forms over wings at high angles of attack. Over the years, LEVs were exploited for augmenting the lift of man-made slender delta wings aircraft. However, recent observations suggested that natural flyers with high-aspect-ratio (high-AR) wings, such as the common swift (Apus apus), can also generate LEVs while gliding. We hypothesize that the planform shape and nonlinear sweep (increasing towards the wingtip) enable the formation and control of such LEVs. In this paper, we investigate whether a stationary LEV can form over a nonlinear swept-back high-AR wing inspired by the swift’s wing shape and evaluate its characteristics and potential aerodynamic benefit. Particle image velocimetry (PIV) measurements were performed in a water flume on a high-AR swept-back wing inspired by the swift wing. Experiments were performed at four spanwise sections and a range of angles of attack for a chord-based Reynolds number of 20 000 . Stationary LEV structures were identified across the wingspan by utilizing the proper orthogonal decomposition (POD) method for angles of attack of 5-15. The size and circulation of the stationary LEV were found to grow towards the wingtip in a nonlinear manner due to shear layer feeding and spanwise transport of mass and vorticity within the LEV, thus confirming that nonlinear high-AR swept-back wings can generate stationary LEVs. Our results suggest that the common swift can generate stationary LEVs over its swept-back wings to glide slower and at a higher rate of descent, with the LEVs potentially supporting up to 60% of its weight.

Original languageEnglish
Article number066016
JournalBioinspiration and Biomimetics
Volume17
Issue number6
DOIs
StatePublished - 1 Nov 2022
Externally publishedYes

Keywords

  • leading-edge vortex
  • particle image velocimetry
  • swept wings
  • swift

ASJC Scopus subject areas

  • Engineering (miscellaneous)
  • Molecular Medicine
  • Biophysics
  • Biochemistry
  • Biotechnology

Fingerprint

Dive into the research topics of 'The leading-edge vortex over a swift-like high-aspect-ratio wing with nonlinear swept-back geometry'. Together they form a unique fingerprint.

Cite this