The Lon AAA+ protease

Research output: Contribution to journalArticlepeer-review

51 Scopus citations


As the first ATP-dependent protease to be identified, Lon holds a special place in the history of cellular biology. In fact, the concept of ATP-dependent protein degradation was established through the findings that led to the discovery of Lon. Therefore, this chapter begins with a historical perspective, describing the milestones that led to the discovery of Lon and ATP-dependent proteolysis, starting from the early findings in the 1960s until the demonstration of Lon’s ATP-dependent proteolytic activity in vitro, in 1981. Most of our knowledge on Lon derives from studies of the Escherichia coli Lon ortholog, and, therefore, most of this chapter relates to this particular enzyme. Nonetheless, Lon is not only found in most bacterial species, it is also found in Archaea and in the mitochondrion and chloroplast of eukaryotic cells. Therefore many of the conclusions gained from studies on the E. coli enzyme are relevant to Lon proteases in other organisms. Lon, more than any other bacterial or organellar protease, is associated with the degradation of misfolded proteins and protein quality control. In addition, Lon also degrades many regulatory proteins that are natively folded, thus it also plays a prominent role in regulation of physiological processes. Throughout the years, many Lon substrates have been identified, confirming its role in the regulation of diverse cellular processes, including cell division, DNA replication, differentiation, and adaptation to stress conditions. Some examples of these functions are described and discussed here, as is the role of Lon in the degradation of misfolded proteins and in protein quality control. Finally, this chapter deals with the exquisite sensitivity of protein degradation inside a cell. How can a protease distinguish so many substrates from cellular proteins that should not be degraded? Can the specificity of a protease be regulated according to the physiological needs of a cell? This chapter thus broadly discusses the substrate specificity of Lon and its allosteric regulation.

Original languageEnglish
Pages (from-to)35-51
Number of pages17
JournalSub-Cellular Biochemistry
StatePublished - 29 May 2013

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology
  • Cancer Research


Dive into the research topics of 'The Lon AAA+ protease'. Together they form a unique fingerprint.

Cite this