TY - JOUR
T1 - The maize leaf lipidome shows multilevel genetic control and high predictive value for agronomic traits
AU - Riedelsheimer, Christian
AU - Brotman, Yariv
AU - Méret, Michaël
AU - Melchinger, Albrecht E.
AU - Willmitzer, Lothar
N1 - Funding Information:
We thank the staff of the experimental research stations of the University of Hohenheim for assistance in conducting the field experiments, and Aenne Eckardt and Gudrun Wolter for sample preparation. This research was supported by the Max Planck Society and the German Federal Ministry of Education and Research (BMBF) within the projects GABI-Energy (grant 0315045) and OPTIMAL (grant 03159580).
PY - 2013/9/3
Y1 - 2013/9/3
N2 - Although the plant lipidome show an enormous level of structural and functional diversity, our knowledge about its genetic control and its connection to whole-plant phenotypes is very limited. Here, we profiled 563 lipid species with UPLC-FT-MS in 289 field-grown inbred lines genotyped with 56,110 SNPs. Genome-wide association study identified 174 associations for 76 lipids explaining up to 31.4% of the genetic variance (P-value 8.4 × 10 -18). Candidate genes were found for lipid synthesis, breakdown, transfer, and protection against peroxidation. The detected SNP-lipid associations could be grouped into associations with 1) individual lipids, 2) lipids from one biochemical class, and 3) lipids from several classes, suggesting a multilevel genetic control architecture. We further found a strong connection between the lipidome and agronomic traits in field-evaluated hybrid progeny. A cross-validated prediction model yielded correlations of up to 0.78 suggesting that the lipidome accurately predicts agronomic traits relevant in hybrid maize breeding.
AB - Although the plant lipidome show an enormous level of structural and functional diversity, our knowledge about its genetic control and its connection to whole-plant phenotypes is very limited. Here, we profiled 563 lipid species with UPLC-FT-MS in 289 field-grown inbred lines genotyped with 56,110 SNPs. Genome-wide association study identified 174 associations for 76 lipids explaining up to 31.4% of the genetic variance (P-value 8.4 × 10 -18). Candidate genes were found for lipid synthesis, breakdown, transfer, and protection against peroxidation. The detected SNP-lipid associations could be grouped into associations with 1) individual lipids, 2) lipids from one biochemical class, and 3) lipids from several classes, suggesting a multilevel genetic control architecture. We further found a strong connection between the lipidome and agronomic traits in field-evaluated hybrid progeny. A cross-validated prediction model yielded correlations of up to 0.78 suggesting that the lipidome accurately predicts agronomic traits relevant in hybrid maize breeding.
UR - http://www.scopus.com/inward/record.url?scp=84883167786&partnerID=8YFLogxK
U2 - 10.1038/srep02479
DO - 10.1038/srep02479
M3 - Article
AN - SCOPUS:84883167786
SN - 2045-2322
VL - 3
JO - Scientific Reports
JF - Scientific Reports
M1 - 2479
ER -