Abstract
Large bulbs of Lilium longiflorum have an obligatory cold requirement to flower. Bulb cooling is widely used to induce and accelerate flowering. However, in-depth investigations of the effect of bulb cooling on major landmarks of plant development are lacking. It has been demonstrated that low temperature induces carbohydrate degradation, yet integrative studies on metabolic changes occurring in the bulb are not available. We detected that cold exposure mainly hastened bulb sprouting, rather than floral transition or blooming. Metabolite profiling of cooled and non-cooled bulbs was carried out, revealing cold-induced accumulation of soluble sugars, lipids and specific amino acids, and a significant reduction in tricarboxylic acid (TCA)-cycle elements. We observed that metabolic pathways located in the cytosol – including glycolysis, lipid synthesis and part of the gamma-Aminobutyric acid (GABA) shunt – were enhanced by cold exposure, while mitochondrial metabolism – namely the TCA cycle – was reduced by cold. We suggest a physiological model accounting for this metabolic discrepancy.
Original language | English |
---|---|
Pages (from-to) | 436-449 |
Number of pages | 14 |
Journal | Physiologia Plantarum |
Volume | 163 |
Issue number | 4 |
DOIs | |
State | Published - 1 Aug 2018 |
ASJC Scopus subject areas
- Physiology
- Genetics
- Plant Science
- Cell Biology