The NANOGrav 15 yr dataset: Posterior predictive checks for gravitational-wave detection with pulsar timing arrays

Gabriella Agazie, Akash Anumarlapudi, Anne M. Archibald, Zaven Arzoumanian, Jeremy George Baier, Paul T. Baker, Bence Bécsy, Laura Blecha, Adam Brazier, Paul R. Brook, Sarah Burke-Spolaor, J. Andrew Casey-Clyde, Maria Charisi, Shami Chatterjee, Katerina Chatziioannou, Tyler Cohen, James M. Cordes, Neil J. Cornish, Fronefield Crawford, H. Thankful CromartieKathryn Crowter, Megan E. Decesar, Paul B. Demorest, Heling Deng, Lankeswar Dey, Timothy Dolch, Elizabeth C. Ferrara, William Fiore, Emmanuel Fonseca, Gabriel E. Freedman, Emiko C. Gardiner, Nate Garver-Daniels, Peter A. Gentile, Kyle A. Gersbach, Joseph Glaser, Deborah C. Good, Kayhan Gültekin, Jeffrey S. Hazboun, Ross J. Jennings, Aaron D. Johnson, Megan L. Jones, Andrew R. Kaiser, David L. Kaplan, Luke Zoltan Kelley, Matthew Kerr, Joey S. Key, Nima Laal, Michael T. Lam, William G. Lamb, Bjorn Larsen, T. Joseph, W. Lazio, Natalia Lewandowska, Tingting Liu, Duncan R. Lorimer, Jing Luo, Ryan S. Lynch, Chung Pei Ma, Dustin R. Madison, Alexander McEwen, James W. McKee, Maura A. McLaughlin, Natasha McMann, Bradley W. Meyers, Patrick M. Meyers, Chiara M.F. Mingarelli, Andrea Mitridate, Cherry Ng, David J. Nice, Stella Koch Ocker, Ken D. Olum, Timothy T. Pennucci, Benetge B.P. Perera, Nihan S. Pol, Henri A. Radovan, Scott M. Ransom, Paul S. Ray, Joseph D. Romano, Jessie C. Runnoe, Alexander Saffer, Shashwat C. Sardesai, Ann Schmiedekamp, Carl Schmiedekamp, Kai Schmitz, Brent J. Shapiro-Albert, Xavier Siemens, Joseph Simon, Magdalena S. Siwek, Sophia V.Sosa Fiscella, Ingrid H. Stairs, Daniel R. Stinebring, Kevin Stovall, Abhimanyu Susobhanan, Joseph K. Swiggum, Stephen R. Taylor, Jacob E. Turner, Caner Unal, Michele Vallisneri, Sarah J. Vigeland, Haley M. Wahl, Caitlin A. Witt, David Wright, Olivia Young

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Pulsar timing array experiments have reported evidence for a stochastic background of nanohertz gravitational waves consistent with the signal expected from a population of supermassive black hole binaries. Their analyses assume power-law spectra for intrinsic pulsar noise and for the background, as well as a Hellings-Downs cross-correlation pattern among the gravitational-wave-induced residuals across pulsars. These assumptions may not be realized in actuality. We test them in the NANOGrav 15 yr dataset using Bayesian posterior predictive checks. After fitting our fiducial model to real data, we generate a population of simulated dataset replications. We use the replications to assess whether the optimal statistic significance, interpulsar correlations, and spectral coefficients are extreme. We recover Hellings-Downs correlations in simulated datasets at significance levels consistent with the correlations measured in the NANOGrav 15 yr dataset. A similar test on spectral coefficients shows that their values in real data are not extreme compared to their distributions across replications. We also evaluate the evidence for the stochastic background using posterior predictive versions of the frequentist optimal statistic and of Bayesian model comparison and find comparable significance (3.2σ and 3σ respectively) to what was previously reported for the standard statistics. We conclude with novel visualizations of the reconstructed gravitational waveforms that enter the residuals for each pulsar. Our analysis strengthens confidence in the identification and characterization of the gravitational-wave background.

Original languageEnglish
Article number042011
JournalPhysical Review D
Volume111
Issue number4
DOIs
StatePublished - 15 Feb 2025

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'The NANOGrav 15 yr dataset: Posterior predictive checks for gravitational-wave detection with pulsar timing arrays'. Together they form a unique fingerprint.

Cite this