TY - JOUR
T1 - The Neural/Immune Gene Ontology
T2 - Clipping the Gene Ontology for neurological and immunological systems
AU - Geifman, Nophar
AU - Monsonego, Alon
AU - Rubin, Eitan
N1 - Funding Information:
Funding: The study was supported by the National Institute of Biotechnology in the Negev and Shaya Horowitz Center for Complexity Sciences. The authors would like to thank the anonymous reviewers for their useful comments and to S. Bauer (Charité Universitätsmedizin Berlin) for assisting us and making adjustments to Ontologizer.
PY - 2010/9/12
Y1 - 2010/9/12
N2 - Background: The Gene Ontology (GO) is used to describe genes and gene products from many organisms. When used for functional annotation of microarray data, GO is often slimmed by editing so that only higher level terms remain. This practice is designed to improve the summarizing of experimental results by grouping high level terms and the statistical power of GO term enrichment analysis.Here, we propose a new approach to editing the gene ontology, clipping, which is the editing of GO according to biological relevance. Creation of a GO subset by clipping is achieved by removing terms (from all hierarchal levels) if they are not functionally relevant to a given domain of interest. Terms that are located in levels higher to relevant terms are kept, thus, biologically irrelevant terms are only removed if they are not parental to terms that are relevant.Results: Using this approach, we have created the Neural-Immune Gene Ontology (NIGO) subset of GO directed for neurological and immunological systems. We tested the performance of NIGO in extracting knowledge from microarray experiments by conducting functional analysis and comparing the results to those obtained using the full GO and a generic GO slim. NIGO not only improved the statistical scores given to relevant terms, but was also able to retrieve functionally relevant terms that did not pass statistical cutoffs when using the full GO or the slim subset.Conclusions: Our results validate the pipeline used to generate NIGO, suggesting it is indeed enriched with terms that are specific to the neural/immune domains. The results suggest that NIGO can enhance the analysis of microarray experiments involving neural and/or immune related systems. They also directly demonstrate the potential such a domain-specific GO has in generating meaningful hypotheses.
AB - Background: The Gene Ontology (GO) is used to describe genes and gene products from many organisms. When used for functional annotation of microarray data, GO is often slimmed by editing so that only higher level terms remain. This practice is designed to improve the summarizing of experimental results by grouping high level terms and the statistical power of GO term enrichment analysis.Here, we propose a new approach to editing the gene ontology, clipping, which is the editing of GO according to biological relevance. Creation of a GO subset by clipping is achieved by removing terms (from all hierarchal levels) if they are not functionally relevant to a given domain of interest. Terms that are located in levels higher to relevant terms are kept, thus, biologically irrelevant terms are only removed if they are not parental to terms that are relevant.Results: Using this approach, we have created the Neural-Immune Gene Ontology (NIGO) subset of GO directed for neurological and immunological systems. We tested the performance of NIGO in extracting knowledge from microarray experiments by conducting functional analysis and comparing the results to those obtained using the full GO and a generic GO slim. NIGO not only improved the statistical scores given to relevant terms, but was also able to retrieve functionally relevant terms that did not pass statistical cutoffs when using the full GO or the slim subset.Conclusions: Our results validate the pipeline used to generate NIGO, suggesting it is indeed enriched with terms that are specific to the neural/immune domains. The results suggest that NIGO can enhance the analysis of microarray experiments involving neural and/or immune related systems. They also directly demonstrate the potential such a domain-specific GO has in generating meaningful hypotheses.
UR - http://www.scopus.com/inward/record.url?scp=77956482479&partnerID=8YFLogxK
U2 - 10.1186/1471-2105-11-458
DO - 10.1186/1471-2105-11-458
M3 - Article
C2 - 20831831
AN - SCOPUS:77956482479
SN - 1471-2105
VL - 11
JO - BMC Bioinformatics
JF - BMC Bioinformatics
M1 - 458
ER -