The permeability of fault zones: A case study of the Dead Sea rift (Middle East)

Gabay Ran, Shalev Eyal, Yechieli Yoseph, Sagy Amir, Weisbrod Noam

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Fault zone architecture plays an important role in flow regimes of hydrological systems. Fault zones can act as conduits, barriers, or conduits/barrier systems depending on their spatial architecture. The goal of this study is to determine the fault-zone permeability structure and its effect on the local hydrogeological system in the Dead Sea fault system. Permeability was measured on small-scale outcrop plug samples at four faults along the Dead Sea fault system, and large-scale slug tests in four boreholes, in different parts of the fault, at Yair fault in Israel. The research results show that values in the damage zone are two to five orders of magnitude higher than those of the fault core (~3.5 × 10-10, 1 × 10-15 m2 respectively), resulting in an anisotropic permeability structure for the overall fault zone and preferable flow parallel to the fault. A set of injection tests in the Yair fault damage zone revealed a water-pressure-dependent behavior. The permeability of this zone increases when employing a higher water pressure in the fault fracture-dominated damage zone, due to the reopening of fractures.

Original languageEnglish
Pages (from-to)425-440
Number of pages16
JournalHydrogeology Journal
Volume22
Issue number2
DOIs
StatePublished - 1 Jan 2014

Keywords

  • Fractured rocks
  • Groundwater flow
  • Hydraulic properties
  • Injection wells
  • Israel
  • West Bank

ASJC Scopus subject areas

  • Water Science and Technology
  • Earth and Planetary Sciences (miscellaneous)

Fingerprint

Dive into the research topics of 'The permeability of fault zones: A case study of the Dead Sea rift (Middle East)'. Together they form a unique fingerprint.

Cite this