The reactivity game: Theoretical predictions for heavy atom tunneling in adamantyl and related carbenes

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

The possibility of carbon atom tunneling at cryogenic temperatures for carbene-based ring expansion of adamantane analogues calls for a delicate balance of reactivity to experimentally detect the transpiring reaction. An overly reactive carbene will precipitously decay; an excessively stable carbene will not tunnel. Nevertheless, the factors that affect the quantum-mechanical tunneling (QMT) reactivity-mass, barrier height and width-are strikingly different from the classical "over the barrier" thermal mechanism. Herein, comparisons with experimental values and predictions on measurable rate constants for novel carbene systems are presented by way of small curvature tunneling (SCT) computations. Adamantane, noradamantane and bisnoradamantane have a significantly different C-C bond strain and reactivity, which can be modulated by tinkering with the carbene substituent atom (H, Cl or F) to obtain an observable lifetime of the reactant. The influence of barrier heights and widths, kinetic isotope effects (KIEs), the detection of the tunneling-determining atoms (TDA) and the comparisons with hydrogen-based reactions are discussed with the objective of finding the physical limits for QMT.

Original languageEnglish
Pages (from-to)7718-7727
Number of pages10
JournalPhysical Chemistry Chemical Physics
Volume16
Issue number17
DOIs
StatePublished - 7 May 2014
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy (all)
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'The reactivity game: Theoretical predictions for heavy atom tunneling in adamantyl and related carbenes'. Together they form a unique fingerprint.

Cite this