TY - JOUR
T1 - The Role of Stabilizer Concentration in the Mobility of Carbon-Supported Nanozerovalent Iron (nZVI) in Fractured Media
AU - Cohen, Meirav
AU - Yakirevich, Alexander
AU - Weisbrod, Noam
N1 - Publisher Copyright:
©2019. American Geophysical Union. All Rights Reserved.
PY - 2019/10/1
Y1 - 2019/10/1
N2 - The mobility of nanozerovalent iron (nZVI) particles is of major importance when assessing their effectiveness for use in contaminated sites. Here, the influence of the stabilizer loading on nZVI mobility was investigated in fractured media. nZVI in the form of Carbo-Iron Colloids (CIC), a composite material of activated carbon as a carrier for nZVI, was used for the tests. CIC was supplemented with carboxymethyl cellulose stabilizer, at three different loadings: 5% wt., 20% wt., and 80% wt., in a moderately saline solution of 250 mM. Transport experiments were conducted in a fractured chalk core, and the characteristics of the solutions and particles were analyzed. The effect of ionic strength was investigated by application of the 80% loading, also in a lower salinity solution of ~3 mM. Transport experiments were modeled, and all results were compared with especially high 1,600% wt. stabilizer loading, from a previous study. Among the different carboxymethyl cellulose loadings, significant differences in mobility and a correlation between mobility and stability were observed. Though, differences in stability were found insignificant. Higher stabilizer concentration and, to a greater extent, a higher number of free stabilizer molecules in solution enhance particle stability and, hence, mobility. A good fit was obtained between the transport experiment results and a model of solute and colloid transport in a single fracture. The model attachment parameters showed a good correlation with the decay rate constants of the stability tests, indicating yet again the significant role played by stability in CIC mobility and the possibility for mobility prediction.
AB - The mobility of nanozerovalent iron (nZVI) particles is of major importance when assessing their effectiveness for use in contaminated sites. Here, the influence of the stabilizer loading on nZVI mobility was investigated in fractured media. nZVI in the form of Carbo-Iron Colloids (CIC), a composite material of activated carbon as a carrier for nZVI, was used for the tests. CIC was supplemented with carboxymethyl cellulose stabilizer, at three different loadings: 5% wt., 20% wt., and 80% wt., in a moderately saline solution of 250 mM. Transport experiments were conducted in a fractured chalk core, and the characteristics of the solutions and particles were analyzed. The effect of ionic strength was investigated by application of the 80% loading, also in a lower salinity solution of ~3 mM. Transport experiments were modeled, and all results were compared with especially high 1,600% wt. stabilizer loading, from a previous study. Among the different carboxymethyl cellulose loadings, significant differences in mobility and a correlation between mobility and stability were observed. Though, differences in stability were found insignificant. Higher stabilizer concentration and, to a greater extent, a higher number of free stabilizer molecules in solution enhance particle stability and, hence, mobility. A good fit was obtained between the transport experiment results and a model of solute and colloid transport in a single fracture. The model attachment parameters showed a good correlation with the decay rate constants of the stability tests, indicating yet again the significant role played by stability in CIC mobility and the possibility for mobility prediction.
KW - CMC
KW - colloid transport
KW - fractured media
KW - groundwater remediation
KW - nZVI
KW - stabilizer loading
UR - http://www.scopus.com/inward/record.url?scp=85074645339&partnerID=8YFLogxK
U2 - 10.1029/2019WR025553
DO - 10.1029/2019WR025553
M3 - Article
AN - SCOPUS:85074645339
SN - 0043-1397
VL - 55
SP - 8164
EP - 8177
JO - Water Resources Research
JF - Water Resources Research
IS - 10
ER -