The secrecy capacity of Gaussian MIMO channels with finite memory

Nir Shlezinger, Daniel Zahavi, Yonathan Murin, Ron Dabora

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

In this paper, we study the secrecy capacity of Gaussian multiple-input multiple-output (MIMO) wiretap channels (WTCs) with a finite memory, subject to a per-symbol average power constraint on the MIMO channel input. MIMO channels with finite memory are very common in wireless communications as well as in wireline communications (e.g., in communications over power lines). To derive the secrecy capacity of the Gaussian MIMO WTC with finite memory, we first construct an asymptotically equivalent block-memoryless MIMO WTC, which is then transformed into a set of parallel, independent, memoryless MIMO WTCs in the frequency domain. The secrecy capacity of the Gaussian MIMO WTC with finite memory is obtained as the secrecy capacity of the set of parallel, independent, memoryless MIMO WTCs, and is expressed as maximization over the input covariance matrices in the frequency domain. Finally, we detail two applications of our result: First, we show that the secrecy capacity of the Gaussian scalar WTC with finite memory can be achieved by waterfilling, and obtain a closed-form expression for this secrecy capacity. Then, we use our result to characterize the secrecy capacity of narrowband powerline channels, thereby resolving one of the major open issues for this channel model.

Original languageEnglish
Article number7805345
Pages (from-to)1874-1897
Number of pages24
JournalIEEE Transactions on Information Theory
Volume63
Issue number3
DOIs
StatePublished - 1 Mar 2017

Keywords

  • Channels with memory
  • MIMO channels
  • Physical layer security
  • Wiretap channels

ASJC Scopus subject areas

  • Information Systems
  • Computer Science Applications
  • Library and Information Sciences

Fingerprint

Dive into the research topics of 'The secrecy capacity of Gaussian MIMO channels with finite memory'. Together they form a unique fingerprint.

Cite this