Abstract
Let T be a positive power-bounded operator on a Banach lattice. We prove: (i) If infn ∥Tn(I - T)∥ < 2, then there is a k ≥ 1 such that limn→∞ ∥Tn(I - Tk)∥ = 0. (ii) limn→∞ ∥Tn(I - T)∥ = 0 if (and only if) infn ∥Tn(I - T)∥ < √3.
Original language | English |
---|---|
Pages (from-to) | 149-153 |
Number of pages | 5 |
Journal | Studia Mathematica |
Volume | 131 |
Issue number | 2 |
DOIs | |
State | Published - 1 Jan 1998 |
ASJC Scopus subject areas
- General Mathematics