Abstract
The release of mitochondrial-intermembrane-space pro-apoptotic proteins, such as cytochrome c, is a key step in initiating apoptosis. Our study addresses two major questions in apoptosis: how are mitochondrial pro-apoptotic proteins released and how is this process regulated? Accumulating evidence indicates that the voltage-depeadent anion channel (VDAC) plays a central role in mitochondria-mediated apoptosis. Here, we demonstrate that the N-terminal domain of VDAC1 controls the release of cytochrome c, apoptosis and the regulation of apoptosis by anti-apoptotic proteins such as hexokinase and Bcl2. Cells expressing N-terminal truncated VDAC1 do not release cytochrome c and are resistant to apoptosis, induced by various stimuli. Employing a variety of experimental approaches, we show that hexokinase and Bcl2 confer protection against apoptosis through interaction with the VDAC1 N-terminal region. We also demonstrate that apoptosis induction is associated with VDAC oligomerization. These results show VDAC1 to be a component of the apoptosis machinery and offer new insight into the mechanism of cytochrome c release and how anti-apoptotic proteins regulate apoptosis and promote tumor cell survival.
Original language | English |
---|---|
Pages (from-to) | 1906-1916 |
Number of pages | 11 |
Journal | Journal of Cell Science |
Volume | 122 |
Issue number | 11 |
DOIs | |
State | Published - 1 Jun 2009 |
Keywords
- Apoptosis
- Bcl2
- Hexokinase
- Mitochondria
- VDAC1
ASJC Scopus subject areas
- Cell Biology