Abstract
Zinc is essential for cell growth, For many years it has been used to treat various epithelial disorders, ranging from wound healing to diarrhea and ulcerative colon disease. The physiological/molecular mechanisms linking zinc and cell growth, however, are not well understood, In recent years, Zn 2+ has emerged as an important signaling molecule, activating intracellular pathways and regulating cell fate, We have functionally identified an extracellular zinc sensing receptor, called zinc sensing receptor (ZnR), that is specifically activated by extracellular Zn2+ at physiological concentrations. The putative ZnR is pharmacologically coupled to a Gq-protein which triggers release of Ca2+ from intracellular stores via the Inositol 1,4,5-trisphosphate (IP3) pathway. This, in turn results in downstream signaling via the MAP and phosphatydilinositol 3-kinase (PI3 kinase) pathways that are linked to cell proliferation. In some cell types, e.g., colonocytes, ZnR activity also upregulates Na+/H+ exchange, mediated by Na+/H+ exchanger isoform 1 (NHE1), which is involved in cellular ion homeostasis in addition to cell proliferation. Our overall hypothesis, as discussed below, is that a ZnR, found in organs where dynamic zinc homeostasis is observed, enables extracellular Zn 2+ to trigger intracellular signaling pathways regulating key cell functions. These include cell proliferation and survival, vectorial ion transport and hormone secretion. Finally, we suggest that ZnR activity found in colonocytes is well positioned to attenuate erosion of the epithelial lining of the colon, thereby preventing or ameliorating diarrhea, but, by signaling through the same pathways, a ZnR may enhance tumor progression in neoplastic disease.
Original language | English |
---|---|
Pages (from-to) | 331-336 |
Number of pages | 6 |
Journal | Molecular Medicine |
Volume | 13 |
Issue number | 7-8 |
DOIs | |
State | Published - 1 Jul 2007 |
ASJC Scopus subject areas
- Molecular Medicine
- Molecular Biology
- Genetics
- Genetics(clinical)