Thermal assisted self-organization of calcium carbonate

Gan Zhang, Cristobal Verdugo-Escamilla, Duane Choquesillo-Lazarte, Juan Manuel García-Ruiz

Research output: Contribution to journalArticlepeer-review

37 Scopus citations

Abstract

Fabrication of mineral multi-textured architectures by self-organization is a formidable challenge for engineering. Current approaches follow a biomimetic route for hybrid materials based on the coupling of carbonate and organic compounds. We explore here the chemical coupling of silica and carbonate, leading to fabrication of inorganic–inorganic biomimetic structures known as silica-carbonate biomorphs. So far, biomorphic structures were restricted to orthorhombic barium, strontium, and calcium carbonate. We demonstrate that, monohydrocalcite a hydrous form of calcium carbonate with trigonal structure can also form biomorphic structures, thus showing biomorphic growth is not dictated by the carbonate crystal structure. We show that it is possible to control the growth regime, and therefore the texture and overall shape, by tuning the growth temperature, thereby shifting the textural pattern within the production of a given architecture. This finding opens a promising route to the fabrication of complex multi-textured self-organized material made of silica and chalk.

Original languageEnglish
Article number5221
JournalNature Communications
Volume9
Issue number1
DOIs
StatePublished - 1 Dec 2018
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Thermal assisted self-organization of calcium carbonate'. Together they form a unique fingerprint.

Cite this