TY - JOUR
T1 - Thermally vs. seismically induced block displacements in Masada rock slopes
AU - Bakun-Mazor, Dagan
AU - Hatzor, Yossef H.
AU - Glaser, Steven D.
AU - Carlos Santamarina, J.
N1 - Funding Information:
Financial support from the US–Israel Binational Science Foundation (BSF) through contract no. 2004122 is gratefully acknowledged. Ulrich Corsmeier from Karlsruhe Institute of Technology is thanked for sharing his data from the West Masada metrological station. The Israel Nature and Parks Authority (INPA) and Eitan Campbell from Masada National Park are thanked for supplying the high quality photographs of the West slope of the Mountain and for assistance in the installation of our monitoring devices. Valentin Gischig is thanked for his critical review, which has greatly improved the quality of this paper.
PY - 2013/1/1
Y1 - 2013/1/1
N2 - We compare thermally and seismically induced sliding mechanisms of blocks that are separated from the rock mass by a tension crack and slide along a frictional interface. The rock slopes of Masada Mountain, Israel, are used to demonstrate our approach. Crack displacement coupled with thermal fluctuations is measured in the West slope of the mountain during two years (2009-11). Physical and mechanical lab tests provide the assumed depth of penetration of the heating front during seasonal cycles of exposure as well as the thermal expansion coefficient of the rock mass. These, along with the shear stiffness of the sliding interface, allow us to quantify the expected thermally induced displacement rate of blocks in Masada, through a proposed wedging-ratcheting failure mechanism. A distinct block in the East slope of the mountain exhibiting a tension crack opening of 200. mm was monitored for displacement and temperature during a single seasonal cycle in 1998. Based on the assumed seismicity of the region and the known topographic site effect, along with the laboratory measured frictional resistance and shear stiffness of the sliding interface, we subject the mapped geometry of the block in the East face to simulated cycles of earthquake vibrations utilizing the numerical, discrete element, discontinuous deformation analysis (DDA) method. We find that for a time window of 5000 years, the observed 200. mm displacement of the East slope block is more likely to have been thermally, rather than seismically, controlled. This result implies that in climatic regions where the temperature amplitude over a seasonal cycle is sufficiently high, thermally induced displacements play an important role in rock slope erosion.
AB - We compare thermally and seismically induced sliding mechanisms of blocks that are separated from the rock mass by a tension crack and slide along a frictional interface. The rock slopes of Masada Mountain, Israel, are used to demonstrate our approach. Crack displacement coupled with thermal fluctuations is measured in the West slope of the mountain during two years (2009-11). Physical and mechanical lab tests provide the assumed depth of penetration of the heating front during seasonal cycles of exposure as well as the thermal expansion coefficient of the rock mass. These, along with the shear stiffness of the sliding interface, allow us to quantify the expected thermally induced displacement rate of blocks in Masada, through a proposed wedging-ratcheting failure mechanism. A distinct block in the East slope of the mountain exhibiting a tension crack opening of 200. mm was monitored for displacement and temperature during a single seasonal cycle in 1998. Based on the assumed seismicity of the region and the known topographic site effect, along with the laboratory measured frictional resistance and shear stiffness of the sliding interface, we subject the mapped geometry of the block in the East face to simulated cycles of earthquake vibrations utilizing the numerical, discrete element, discontinuous deformation analysis (DDA) method. We find that for a time window of 5000 years, the observed 200. mm displacement of the East slope block is more likely to have been thermally, rather than seismically, controlled. This result implies that in climatic regions where the temperature amplitude over a seasonal cycle is sufficiently high, thermally induced displacements play an important role in rock slope erosion.
KW - Earthquakes
KW - Rock slopes
KW - Site response
KW - Slope stability
KW - Thermally-induced sliding
KW - Thermo-elasticity
UR - http://www.scopus.com/inward/record.url?scp=84875849191&partnerID=8YFLogxK
U2 - 10.1016/j.ijrmms.2013.03.005
DO - 10.1016/j.ijrmms.2013.03.005
M3 - Article
AN - SCOPUS:84875849191
SN - 1365-1609
VL - 61
SP - 196
EP - 211
JO - International Journal of Rock Mechanics and Mining Sciences
JF - International Journal of Rock Mechanics and Mining Sciences
ER -