Thermoluminescence solid-state nanodosimetry-the peak 5a/5 dosemeter

E. Fuks, Y. S. Horowitz, A. Horowitz, L. Oster, S. Marino, M. Rainer, A. Rosenfeld, H. Datz

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

The shape of composite peak 5 in the glow curve of LiF:Mg,Ti (TLD-100) following 90Sr/90Y beta irradiation, previously demonstrated to be dependent on the cooling rate used in the 400°C pre-irradiation anneal, is shown to be dependent on ionisation density in both naturally cooled and slow-cooled samples. Following heavy-charged particle high-ionisation density (HID) irradiation, the temperature of composite peak 5 decreases by ~5°C and the peak becomes broader. This behaviour is attributed to an increase in the relative intensity of peak 5a (a low-temperature satellite of peak 5). The relative intensity of peak 5a is estimated using a computerised glow curve deconvolution code based on first-order kinetics. The analysis uses kinetic parameters for peaks 4 and 5 determined from ancillary measurements resulting in nearly 'single-glow peak' curves for both the peaks. In the slow-cooled samples, owing to the increased relative intensity of peak 5a compared with the naturally cooled samples, the precision of the measurement of the 5a/5 intensity ratio is found to be ~15 % (1 SD) compared with ~25 % for the naturally cooled samples. The ratio of peak 5a/5 in the slow-cooled samples is found to increase systematically and gradually through a variety of radiation fields from a minimum value of 0.13±0.02 for 90Sr/90Y low-ionisation density irradiations to a maximum value of ~0.8 for 20 MeV Cu and I ion HID irradiations. Irradiation by low-energy electrons of energy 0.1-1.5 keV results in values between 1.27 and 0.95, respectively. The increasing values of the ratio of peak 5a/5 with increasing ionisation density demonstrate the viability of the concept of the peak 5a/5 nanodosemeter and its potential in the measurement of average ionisation density in a 'nanoscopic' mass containing the trapping centre/luminescent centre spatially correlated molecule giving rise to composite peak 5.

Original languageEnglish
Article numberncq479
Pages (from-to)416-426
Number of pages11
JournalRadiation Protection Dosimetry
Volume143
Issue number2-4
DOIs
StatePublished - 1 Feb 2011

ASJC Scopus subject areas

  • Radiation
  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging
  • Public Health, Environmental and Occupational Health

Fingerprint

Dive into the research topics of 'Thermoluminescence solid-state nanodosimetry-the peak 5a/5 dosemeter'. Together they form a unique fingerprint.

Cite this