Time Domain (TD) Proton NMR Analysis of the Oxidative Safety and Quality of Lipid-Rich Foods

Tatiana Osheter, Charles Linder, Zeev Wiesman

Research output: Contribution to journalReview articlepeer-review

6 Scopus citations

Abstract

Food safety monitoring is highly important due to the generation of unhealthy components within many food products during harvesting, processing, storage, transportation and cooking. Current technologies for food safety analysis often require sample extraction and the modification of the complex chemical and morphological structures of foods, and are either time consuming, have insufficient component resolution or require costly and complex instrumentation. In addition to the detection of unhealthy chemical toxins and microbes, food safety needs further developments in (a) monitoring the optimal nutritional compositions in many different food categories and (b) minimizing the potential chemical changes of food components into unhealthy products at different stages from food production until digestion. Here, we review an efficient methodology for overcoming the present analytical limitations of monitoring a food's composition, with an emphasis on oxidized food components, such as polyunsaturated fatty acids, in complex structures, including food emulsions, using compact instruments for simple real-time analysis. An intelligent low-field proton NMR as a time domain (TD) NMR relaxation sensor technology for the monitoring of T 2 (spin-spin) and T 1 (spin-lattice) energy relaxation times is reviewed to support decision-making by producers, retailers and consumers in regard to food safety and nutritional value during production, shipping, storage and consumption.

Original languageEnglish
Article number230
JournalBiosensors
Volume12
Issue number4
DOIs
StatePublished - 9 Apr 2022

Keywords

  • chemical and morphology
  • food safety
  • oxidation
  • TD NMR sensor
  • thermal stress

ASJC Scopus subject areas

  • Clinical Biochemistry

Fingerprint

Dive into the research topics of 'Time Domain (TD) Proton NMR Analysis of the Oxidative Safety and Quality of Lipid-Rich Foods'. Together they form a unique fingerprint.

Cite this