Tokenization Matters: Navigating Data-Scarce Tokenization for Gender Inclusive Language Technologies

Anaelia Ovalle, Ninareh Mehrabi, Palash Goyal, Jwala Dhamala, Kai Wei Chang, Richard Zemel, Aram Galstyan, Yuval Pinter, Rahul Gupta

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Gender-inclusive NLP research has documented the harmful limitations of gender binary-centric large language models (LLM), such as the inability to correctly use gender-diverse English neopronouns (e.g., xe, zir, fae). While data scarcity is a known culprit, the precise mechanisms through which scarcity affects this behavior remain underexplored. We discover LLM misgendering is significantly influenced by Byte-Pair Encoding (BPE) tokenization, the tokenizer powering many popular LLMs. Unlike binary pronouns, BPE overfragments neopronouns, a direct consequence of data scarcity during tokenizer training. This disparate tokenization mirrors tokenizer limitations observed in multilingual and low-resource NLP, unlocking new misgendering mitigation strategies. We propose two techniques: (1) pronoun tokenization parity, a method to enforce consistent tokenization across gendered pronouns, and (2) utilizing pre-existing LLM pronoun knowledge to improve neopronoun proficiency. Our proposed methods outperform finetuning with standard BPE, improving neopronoun accuracy from 14.1% to 58.4%. Our paper is the first to link LLM misgendering to tokenization and deficient neopronoun grammar, indicating that LLMs unable to correctly treat neopronouns as pronouns are more prone to misgender.

Original languageEnglish
Title of host publicationFindings of the Association for Computational Linguistics
Subtitle of host publicationNAACL 2024 - Findings
EditorsKevin Duh, Helena Gomez, Steven Bethard
PublisherAssociation for Computational Linguistics (ACL)
Pages1739-1756
Number of pages18
ISBN (Electronic)9798891761193
StatePublished - 1 Jan 2024
Event2024 Findings of the Association for Computational Linguistics: NAACL 2024 - Mexico City, Mexico
Duration: 16 Jun 202421 Jun 2024

Publication series

NameFindings of the Association for Computational Linguistics: NAACL 2024 - Findings

Conference

Conference2024 Findings of the Association for Computational Linguistics: NAACL 2024
Country/TerritoryMexico
CityMexico City
Period16/06/2421/06/24

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Software

Fingerprint

Dive into the research topics of 'Tokenization Matters: Navigating Data-Scarce Tokenization for Gender Inclusive Language Technologies'. Together they form a unique fingerprint.

Cite this