Towards predictable vehicular networks

Elad Michael Schiller

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

Abstract

Communication primitives consider information delivery with different guarantees regarding their reliability. The provision of reliability and predictability needs to overcome a number of challenges with respect to failures and a number of known impossibility results. This chapter covers a number of these challenges in the context of vehicular systems and networks. We start by showing the medium access control (MAC) protocol for wireless mobile ad hoc networks can recover from timing failures and message collision and yet provide a predictable schedule in a time-division fashion without the need for external reference, such as commonly synchronized clock. We then consider the case of transport layer protocols and show how to deal with settings in which messages can be omitted, reordered and duplicated. We also consider how mobile ad hoc networks and vehicular networks can organize themselves for emulating virtual nodes as well as emulating replicated state-machines using group communication. In this context, we discuss the different alternatives for overcoming well-known impossibilities when considering cooperative vehicular applications. Finally, we exemplify applications and discuss their validation.

Original languageEnglish
Title of host publicationStudies in Systems, Decision and Control
PublisherSpringer International Publishing
Pages153-167
Number of pages15
DOIs
StatePublished - 1 Jan 2016
Externally publishedYes

Publication series

NameStudies in Systems, Decision and Control
Volume52
ISSN (Print)2198-4182
ISSN (Electronic)2198-4190

ASJC Scopus subject areas

  • Computer Science (miscellaneous)
  • Control and Systems Engineering
  • Automotive Engineering
  • Social Sciences (miscellaneous)
  • Economics, Econometrics and Finance (miscellaneous)
  • Control and Optimization
  • Decision Sciences (miscellaneous)

Fingerprint

Dive into the research topics of 'Towards predictable vehicular networks'. Together they form a unique fingerprint.

Cite this