Towards stationary time-vertex signal processing

Nathanael Perraudin, Andreas Loukas, Francesco Grassi, Pierre Vandergheynst

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

36 Scopus citations

Abstract

Graph-based methods for signal processing have shown promise for the analysis of data exhibiting irregular structure, such as those found in social, transportation, and sensor networks. Yet, though these systems are often dynamic, state-of-the-art methods for graph signal processing ignore the time dimension. To address this shortcoming, this paper considers the statistical analysis of time-varying graph signals. We introduce a novel definition of joint (time-vertex) stationarity, which generalizes the classical definition of time stationarity and the recent definition appropriate for graphs. This gives rise to a scalable Wiener optimization framework for denoising, semi-supervised learning, or more generally inverting a linear operator, that is provably optimal. Experimental results on real weather data demonstrate that taking into account graph and time dimensions jointly can yield significant accuracy improvements in the reconstruction effort.

Original languageEnglish
Title of host publication2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers
Pages3914-3918
Number of pages5
ISBN (Electronic)9781509041176
DOIs
StatePublished - 16 Jun 2017
Externally publishedYes
Event2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - New Orleans, United States
Duration: 5 Mar 20179 Mar 2017

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Conference

Conference2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
Country/TerritoryUnited States
CityNew Orleans
Period5/03/179/03/17

Keywords

  • Graph signal processing
  • joint stationarity
  • time-vertex signal processing
  • Wiener filter

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Towards stationary time-vertex signal processing'. Together they form a unique fingerprint.

Cite this