TY - JOUR
T1 - Trace Element Geochemistry in North Pacific Red Clay Sediment Porewaters and Implications for Water-Column Studies
AU - Steiner, Zvi
AU - Antler, Gilad
AU - Berelson, William M.
AU - Crockford, Peter W.
AU - Dunlea, Ann G.
AU - Hou, Yi
AU - Adkins, Jess F.
AU - Turchyn, Alexandra V.
AU - Achterberg, Eric P.
N1 - Publisher Copyright:
© 2023. The Authors.
PY - 2023/11/1
Y1 - 2023/11/1
N2 - Geochemical analyses of trace elements in the ocean water column have suggested that pelagic clay-rich sediments are a major source of various elements to bottom-waters. However, corresponding high-quality measurements of trace element concentrations in porewaters of pelagic clay-rich sediments are scarce, making it difficult to evaluate the contributions from benthic processes to global oceanic cycles of trace elements. To bridge this gap, we analyzed porewater and bulk sediment concentrations of vanadium, chromium, cobalt, nickel, copper, arsenic, molybdenum, barium and uranium, as well as concentrations of the major oxidants nitrate, manganese, iron, and sulfate in the top 30 cm of cores collected along a transect from Hawaii to Alaska. The data show large increases in porewater concentrations of vanadium, manganese, cobalt, nickel, copper, and arsenic within the top cm of the sediment, consistent with the release of these elements from remineralized organic matter. The sediments are a sink for sulfate, uranium, and molybdenum, even though conditions within the sampled top 30 cm remain aerobic. Porewater chromium concentrations generally increase with depth due to release from sediment particles. Extrapolated to the global aerial extent of pelagic clay sediment, the benthic fluxes in mol yr−1 are Ba 3.9 ± 3.6 × 109, Mn 3.4 ± 3.5 × 108, Co 2.6 ± 1.3 × 107, Ni 9.6 ± 8.6 × 108, Cu 4.6 ± 2.4 × 109, Cr 1.7 ± 1.1 × 108, As 6.1 ± 7.0 × 108, V 6.0 ± 2.5 × 109. With the exception of vanadium, calculated fluxes across the sediment–water interface are consistent with the variability in bottom-water concentrations and ocean residence time of the studied elements.
AB - Geochemical analyses of trace elements in the ocean water column have suggested that pelagic clay-rich sediments are a major source of various elements to bottom-waters. However, corresponding high-quality measurements of trace element concentrations in porewaters of pelagic clay-rich sediments are scarce, making it difficult to evaluate the contributions from benthic processes to global oceanic cycles of trace elements. To bridge this gap, we analyzed porewater and bulk sediment concentrations of vanadium, chromium, cobalt, nickel, copper, arsenic, molybdenum, barium and uranium, as well as concentrations of the major oxidants nitrate, manganese, iron, and sulfate in the top 30 cm of cores collected along a transect from Hawaii to Alaska. The data show large increases in porewater concentrations of vanadium, manganese, cobalt, nickel, copper, and arsenic within the top cm of the sediment, consistent with the release of these elements from remineralized organic matter. The sediments are a sink for sulfate, uranium, and molybdenum, even though conditions within the sampled top 30 cm remain aerobic. Porewater chromium concentrations generally increase with depth due to release from sediment particles. Extrapolated to the global aerial extent of pelagic clay sediment, the benthic fluxes in mol yr−1 are Ba 3.9 ± 3.6 × 109, Mn 3.4 ± 3.5 × 108, Co 2.6 ± 1.3 × 107, Ni 9.6 ± 8.6 × 108, Cu 4.6 ± 2.4 × 109, Cr 1.7 ± 1.1 × 108, As 6.1 ± 7.0 × 108, V 6.0 ± 2.5 × 109. With the exception of vanadium, calculated fluxes across the sediment–water interface are consistent with the variability in bottom-water concentrations and ocean residence time of the studied elements.
KW - benthic fluxes
KW - GEOTRACES
KW - North Pacific
KW - porewater
KW - red clay
KW - trace metals
UR - http://www.scopus.com/inward/record.url?scp=85176758724&partnerID=8YFLogxK
U2 - 10.1029/2023GB007844
DO - 10.1029/2023GB007844
M3 - Article
AN - SCOPUS:85176758724
SN - 0886-6236
VL - 37
JO - Global Biogeochemical Cycles
JF - Global Biogeochemical Cycles
IS - 11
M1 - e2023GB007844
ER -