Abstract
This letter deals with robust estimation of the output layer weights in a radial basis function network (RBFN) with predetermined hidden layer parameters. Specifically, we presume a RBFN regression model interfered by non-Gaussian impulsive noise. Under this framework, a new robust extension of the least-squares-estimator (LSE) is introduced. This estimator, called measure-transformed LSE (MT-LSE), operates by applying a transform to the joint probability measure associated with reshaped versions of the input-target training data pairs. The considered transform is generated by a non-negative function, called MT-function, that weights the data points. We show that proper selection of the MT-function substantially improves the estimation accuracy in the presence of impulsive noise, while maintaining the implementation simplicity of the standard LSE. The performance advantage of the MT-LSE, comparing to the LSE and other robust alternatives, is illustrated in a simulation study focusing on time-series prediction.
Original language | English |
---|---|
Pages (from-to) | 1567-1571 |
Number of pages | 5 |
Journal | IEEE Signal Processing Letters |
Volume | 30 |
DOIs | |
State | Published - 1 Jan 2023 |
Keywords
- Estimation theory
- probability measure-transform
- radial basis function network
- robust statistics
ASJC Scopus subject areas
- Signal Processing
- Electrical and Electronic Engineering
- Applied Mathematics