TY - JOUR
T1 - Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.)
AU - Savoi, Stefania
AU - Wong, Darren C.J.
AU - Arapitsas, Panagiotis
AU - Miculan, Mara
AU - Bucchetti, Barbara
AU - Peterlunger, Enrico
AU - Fait, Aaron
AU - Mattivi, Fulvio
AU - Castellarin, Simone D.
N1 - Funding Information:
This study was funded by the Italian Ministry of Agricultural and Forestry Policies (VIGNETO); the Fondazione Edmund Mach (GMPF), the COST Action FA1106 Quality Fruit, the University of British Columbia (10R18459), and Natural Sciences and Engineering Research Council of Canada (10R23082). We thank Georg Weingart for his contribution in the sample preparation for metabolite extractions and Christopher J. Walkey for critically reading the article.
Publisher Copyright:
© 2016 Savoi et al.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Background: Secondary metabolism contributes to the adaptation of a plant to its environment. In wine grapes, fruit secondary metabolism largely determines wine quality. Climate change is predicted to exacerbate drought events in several viticultural areas, potentially affecting the wine quality. In red grapes, water deficit modulates flavonoid accumulation, leading to major quantitative and compositional changes in the profile of the anthocyanin pigments; in white grapes, the effect of water deficit on secondary metabolism is still largely unknown. Results: In this study we investigated the impact of water deficit on the secondary metabolism of white grapes using a large scale metabolite and transcript profiling approach in a season characterized by prolonged drought. Irrigated grapevines were compared to non-irrigated grapevines that suffered from water deficit from early stages of berry development to harvest. A large effect of water deficit on fruit secondary metabolism was observed. Increased concentrations of phenylpropanoids, monoterpenes, and tocopherols were detected, while carotenoid and flavonoid accumulations were differentially modulated by water deficit according to the berry developmental stage. The RNA-sequencing analysis carried out on berries collected at three developmental stages-before, at the onset, and at late ripening-indicated that water deficit affected the expression of 4,889 genes. The Gene Ontology category secondary metabolic process was overrepresented within up-regulated genes at all the stages of fruit development considered, and within down-regulated genes before ripening. Eighteen phenylpropanoid, 16 flavonoid, 9 carotenoid, and 16 terpenoid structural genes were modulated by water deficit, indicating the transcriptional regulation of these metabolic pathways in fruit exposed to water deficit. An integrated network and promoter analyses identified a transcriptional regulatory module that encompasses terpenoid genes, transcription factors, and enriched droughtresponsive elements in the promoter regions of those genes as part of the grapes response to drought. Conclusion: Our study reveals that grapevine berries respond to drought by modulating several secondary metabolic pathways, and particularly, by stimulating the production of phenylpropanoids, the carotenoid zeaxanthin, and of volatile organic compounds such as monoterpenes, with potential effects on grape and wine antioxidant potential, composition, and sensory features.
AB - Background: Secondary metabolism contributes to the adaptation of a plant to its environment. In wine grapes, fruit secondary metabolism largely determines wine quality. Climate change is predicted to exacerbate drought events in several viticultural areas, potentially affecting the wine quality. In red grapes, water deficit modulates flavonoid accumulation, leading to major quantitative and compositional changes in the profile of the anthocyanin pigments; in white grapes, the effect of water deficit on secondary metabolism is still largely unknown. Results: In this study we investigated the impact of water deficit on the secondary metabolism of white grapes using a large scale metabolite and transcript profiling approach in a season characterized by prolonged drought. Irrigated grapevines were compared to non-irrigated grapevines that suffered from water deficit from early stages of berry development to harvest. A large effect of water deficit on fruit secondary metabolism was observed. Increased concentrations of phenylpropanoids, monoterpenes, and tocopherols were detected, while carotenoid and flavonoid accumulations were differentially modulated by water deficit according to the berry developmental stage. The RNA-sequencing analysis carried out on berries collected at three developmental stages-before, at the onset, and at late ripening-indicated that water deficit affected the expression of 4,889 genes. The Gene Ontology category secondary metabolic process was overrepresented within up-regulated genes at all the stages of fruit development considered, and within down-regulated genes before ripening. Eighteen phenylpropanoid, 16 flavonoid, 9 carotenoid, and 16 terpenoid structural genes were modulated by water deficit, indicating the transcriptional regulation of these metabolic pathways in fruit exposed to water deficit. An integrated network and promoter analyses identified a transcriptional regulatory module that encompasses terpenoid genes, transcription factors, and enriched droughtresponsive elements in the promoter regions of those genes as part of the grapes response to drought. Conclusion: Our study reveals that grapevine berries respond to drought by modulating several secondary metabolic pathways, and particularly, by stimulating the production of phenylpropanoids, the carotenoid zeaxanthin, and of volatile organic compounds such as monoterpenes, with potential effects on grape and wine antioxidant potential, composition, and sensory features.
KW - Abiotic stress
KW - Grapevine
KW - Network analysis
KW - RNA sequencing
KW - Transcriptomics
KW - Water deficit
UR - http://www.scopus.com/inward/record.url?scp=85007569652&partnerID=8YFLogxK
U2 - 10.1186/s12870-016-0760-1
DO - 10.1186/s12870-016-0760-1
M3 - Article
AN - SCOPUS:85007569652
SN - 1471-2229
VL - 16
JO - BMC Plant Biology
JF - BMC Plant Biology
IS - 1
M1 - 67
ER -