TY - JOUR
T1 - Transcriptomic signatures across human tissues identify functional rare genetic variation
AU - TOPMed Lipids Working Group
AU - GTEx Consortium
AU - Ferraro, Nicole M.
AU - Strober, Benjamin J.
AU - Einson, Jonah
AU - Abell, Nathan S.
AU - Aguet, Francois
AU - Barbeira, Alvaro N.
AU - Brandt, Margot
AU - Bucan, Maja
AU - Castel, Stephane E.
AU - Davis, Joe R.
AU - Greenwald, Emily
AU - Hess, Gaelen T.
AU - Hilliard, Austin T.
AU - Kember, Rachel L.
AU - Kotis, Bence
AU - Park, Yo Son
AU - Peloso, Gina
AU - Ramdas, Shweta
AU - Scott, Alexandra J.
AU - Smail, Craig
AU - Tsang, Emily K.
AU - Zekavat, Seyedeh M.
AU - Ziosi, Marcello
AU - Aradhana,
AU - Ardlie, Kristin G.
AU - Assimes, Themistocles L.
AU - Bassik, Michael C.
AU - Brown, Christopher D.
AU - Correa, Adolfo
AU - Hall, Ira
AU - Im, Hae Kyung
AU - Li, Xin
AU - Natarajan, Pradeep
AU - Lappalainen, Tuuli
AU - Mohammadi, Pejman
AU - Montgomery, Stephen B.
AU - Battle, Alexis
AU - Anand, Shankara
AU - Gabriel, Stacey
AU - Getz, Gad A.
AU - Graubert, Aaron
AU - Hadley, Kane
AU - Handsaker, Robert E.
AU - Huang, Katherine H.
AU - Kashin, Seva
AU - Li, Xiao
AU - MacArthur, Daniel G.
AU - Meier, Samuel R.
AU - Nedzel, Jared L.
AU - Yeger-Lotem, Esti
N1 - Publisher Copyright:
© 2020 American Association for the Advancement of Science. All rights reserved.
PY - 2020/9/11
Y1 - 2020/9/11
N2 - Rare genetic variants are abundant across the human genome, and identifying their function and phenotypic impact is a major challenge. Measuring aberrant gene expression has aided in identifying functional, large-effect rare variants (RVs). Here, we expanded detection of genetically driven transcriptome abnormalities by analyzing gene expression, allele-specific expression, and alternative splicing from multitissue RNA-sequencing data, and demonstrate that each signal informs unique classes of RVs. We developed Watershed, a probabilistic model that integrates multiple genomic and transcriptomic signals to predict variant function, validated these predictions in additional cohorts and through experimental assays, and used them to assess RVs in the UK Biobank, the Million Veterans Program, and the Jackson Heart Study. Our results link thousands of RVs to diverse molecular effects and provide evidence to associate RVs affecting the transcriptome with human traits.
AB - Rare genetic variants are abundant across the human genome, and identifying their function and phenotypic impact is a major challenge. Measuring aberrant gene expression has aided in identifying functional, large-effect rare variants (RVs). Here, we expanded detection of genetically driven transcriptome abnormalities by analyzing gene expression, allele-specific expression, and alternative splicing from multitissue RNA-sequencing data, and demonstrate that each signal informs unique classes of RVs. We developed Watershed, a probabilistic model that integrates multiple genomic and transcriptomic signals to predict variant function, validated these predictions in additional cohorts and through experimental assays, and used them to assess RVs in the UK Biobank, the Million Veterans Program, and the Jackson Heart Study. Our results link thousands of RVs to diverse molecular effects and provide evidence to associate RVs affecting the transcriptome with human traits.
UR - http://www.scopus.com/inward/record.url?scp=85090818075&partnerID=8YFLogxK
U2 - 10.1126/science.aaz5900
DO - 10.1126/science.aaz5900
M3 - Article
C2 - 32913073
AN - SCOPUS:85090818075
SN - 0036-8075
VL - 369
JO - Science
JF - Science
IS - 6509
M1 - eaaz5900
ER -