TY - JOUR
T1 - Transfer hydrogenation of levulinic acid from glycerol and ethanol using water-soluble iridium N-heterocyclic carbene complexes
AU - Wang, Kai
AU - Heltzel, Jacob
AU - Sandefur, Evan
AU - Culley, Keira
AU - Lemcoff, Gabriel
AU - Voutchkova-Kostal, Adelina
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/7/15
Y1 - 2020/7/15
N2 - The upgrading of biomass derivatives to biofuels and chemicals through transfer hydrogenation (TH) is attractive relative to direct hydrogenation, especially when the hydrogen donors can be sourced renewably. Here we report the first process that uses glycerol, a renewable waste material from biodiesel processing, as a hydrogen donor in the catalytic TH of a biomass-derived platform chemical, levulinic acid, to selectively afford γ-hydroxyvaleric acid (GHV) and lactic acid (LA). GHV can be further converted to γ-valerolactone (GVL), a widely used platform chemical. Levulinic acid can be used directly, without esterification, which is typically needed for transfer hydrogenation. The process is efficiently facilitated by robust iridium N-heterocyclic carbene (NHC) complexes with sulfonate functional groups at low catalyst loading (1–10 ppm), affording quantitative conversion of levulinic acid in the presence of KOH to GHV, with >100,000 TON in 2 h at 150 °C, using 1 ppm catalyst. The most prolific catalyst, [(NHC-SO3-)2(CO)2Ir]Na, can also facilitate transfer hydrogenation from other hydrogen donors, such as 2-propanol, potassium formate, and most notably, ethanol, which can also be derived from renewables. Ethanol is a highly efficient hydrogen donor for levulinic acid using this catalyst, affording >7,000 turnovers in 2 h using 10 ppm catalyst.
AB - The upgrading of biomass derivatives to biofuels and chemicals through transfer hydrogenation (TH) is attractive relative to direct hydrogenation, especially when the hydrogen donors can be sourced renewably. Here we report the first process that uses glycerol, a renewable waste material from biodiesel processing, as a hydrogen donor in the catalytic TH of a biomass-derived platform chemical, levulinic acid, to selectively afford γ-hydroxyvaleric acid (GHV) and lactic acid (LA). GHV can be further converted to γ-valerolactone (GVL), a widely used platform chemical. Levulinic acid can be used directly, without esterification, which is typically needed for transfer hydrogenation. The process is efficiently facilitated by robust iridium N-heterocyclic carbene (NHC) complexes with sulfonate functional groups at low catalyst loading (1–10 ppm), affording quantitative conversion of levulinic acid in the presence of KOH to GHV, with >100,000 TON in 2 h at 150 °C, using 1 ppm catalyst. The most prolific catalyst, [(NHC-SO3-)2(CO)2Ir]Na, can also facilitate transfer hydrogenation from other hydrogen donors, such as 2-propanol, potassium formate, and most notably, ethanol, which can also be derived from renewables. Ethanol is a highly efficient hydrogen donor for levulinic acid using this catalyst, affording >7,000 turnovers in 2 h using 10 ppm catalyst.
KW - Ethanol
KW - Glycerol
KW - Iridium
KW - Levulinic acid
KW - N-heterocyclic carbene
KW - Transfer hydrogenation
UR - http://www.scopus.com/inward/record.url?scp=85084414381&partnerID=8YFLogxK
U2 - 10.1016/j.jorganchem.2020.121310
DO - 10.1016/j.jorganchem.2020.121310
M3 - Article
AN - SCOPUS:85084414381
SN - 0022-328X
VL - 919
JO - Journal of Organometallic Chemistry
JF - Journal of Organometallic Chemistry
M1 - 121310
ER -