TY - JOUR
T1 - Transformation patterns of subaerial micro-tidal beaches
AU - Bowman, Dan
N1 - Funding Information:
Acknowledgements: I wish to express my thanks to Mrs. B. Holin for her loyal assistance during field work and to Mrs. Lazar Sharona for the drafting work. The critical comments of A. Golik, V. Goldsmith, j . Hidore, and I. Perath are gratefully acknowledged. This study was supported by Ben Gurion University of the Negev, Beer Sheva, Israel.
PY - 1981/1/1
Y1 - 1981/1/1
N2 - Seven subaerial, low energy beaches in the SE Mediterranean were surveyed biweekly for 13 months. Beach level data were computer-processed and plotted as time-series profile diagrams that differentiated the subaerial beach into three basic subenvironments: backshore, berm, and swash-zone. Heterogeneous seasonal trends in beach sand budget, erosion/accretion patterns, occurrence of ridges and berm-crests, and in pollution by seaborne tar were observed. The profile stations also showed very different degrees of seasonality, although located along similar beaches. Local beachrock protection, when evident, effectively masked seasonality by significantly lowering beach dynamics. Biweekly, seasonal, and annual fluctuations of the beach sand-budget were computed. Average annual net sand flux at the seven beaches was 66 m3/m of beach front, though wide variations occurred. Annual changes in the sand budget along the study area exceeded volumetric changes within the profile, indicating longshore sand transfer. Synchronism of beach behavior prevailed only at the seasonal level. However, intra-seasonal fluctuations for the different profile stations were out of phase, indicating poor synchronism of beach response due to longshore movement of rhythmic topography. Profile changes were thus often unrelated to concomitant wave-climate changes. The overall heterogeneous beach response was in sharp contrast to the identical wave climate, similar bathymetry, and sedimentology of the studied beaches.
AB - Seven subaerial, low energy beaches in the SE Mediterranean were surveyed biweekly for 13 months. Beach level data were computer-processed and plotted as time-series profile diagrams that differentiated the subaerial beach into three basic subenvironments: backshore, berm, and swash-zone. Heterogeneous seasonal trends in beach sand budget, erosion/accretion patterns, occurrence of ridges and berm-crests, and in pollution by seaborne tar were observed. The profile stations also showed very different degrees of seasonality, although located along similar beaches. Local beachrock protection, when evident, effectively masked seasonality by significantly lowering beach dynamics. Biweekly, seasonal, and annual fluctuations of the beach sand-budget were computed. Average annual net sand flux at the seven beaches was 66 m3/m of beach front, though wide variations occurred. Annual changes in the sand budget along the study area exceeded volumetric changes within the profile, indicating longshore sand transfer. Synchronism of beach behavior prevailed only at the seasonal level. However, intra-seasonal fluctuations for the different profile stations were out of phase, indicating poor synchronism of beach response due to longshore movement of rhythmic topography. Profile changes were thus often unrelated to concomitant wave-climate changes. The overall heterogeneous beach response was in sharp contrast to the identical wave climate, similar bathymetry, and sedimentology of the studied beaches.
UR - http://www.scopus.com/inward/record.url?scp=0019675347&partnerID=8YFLogxK
U2 - 10.1080/02723646.1981.10642203
DO - 10.1080/02723646.1981.10642203
M3 - Article
AN - SCOPUS:0019675347
SN - 0272-3646
VL - 2
SP - 34
EP - 46
JO - Physical Geography
JF - Physical Geography
IS - 1
ER -