Abstract
We prove that the tree-width of graphs in a hereditary class defined by a finite set F of forbidden induced subgraphs is bounded if and only if F includes a complete graph, a complete bipartite graph, a tripod (a forest in which every connected component has at most 3 leaves) and the line graph of a tripod.
| Original language | English |
|---|---|
| Article number | 103517 |
| Journal | European Journal of Combinatorics |
| Volume | 103 |
| DOIs | |
| State | Published - 1 Jun 2022 |
| Externally published | Yes |
ASJC Scopus subject areas
- Discrete Mathematics and Combinatorics