@inproceedings{5108ea4307be4f71a3e5e3ed37692e5d,
title = "Tricking the Hashing Trick: A Tight Lower Bound on the Robustness of CountSketch to Adaptive Inputs",
abstract = "CountSketch and Feature Hashing (the “hashing trick”) are popular randomized dimensionality reduction methods that support recovery of ℓ2-heavy hitters (keys i where vi2 > ϵ∥v∥22) and approximate inner products. When the inputs are not adaptive (do not depend on prior outputs), classic estimators applied to a sketch of size O(ℓ/ϵ) are accurate for a number of queries that is exponential in ℓ. When inputs are adaptive, however, an adversarial input can be constructed after O(ℓ) queries with the classic estimator and the best known robust estimator only supports {\~O}(ℓ2) queries. In this work we show that this quadratic dependence is in a sense inherent: We design an attack that after O(ℓ2) queries produces an adversarial input vector whose sketch is highly biased. Our attack uses “natural” non-adaptive inputs (only the final adversarial input is chosen adaptively) and universally applies with any correct estimator, including one that is unknown to the attacker. In that, we expose inherent vulnerability of this fundamental method.",
author = "Edith Cohen and Jelani Nelson and Tam{\'a}s Sarl{\'o}s and Uri Stemmer",
note = "Publisher Copyright: Copyright {\textcopyright} 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.; 37th AAAI Conference on Artificial Intelligence, AAAI 2023 ; Conference date: 07-02-2023 Through 14-02-2023",
year = "2023",
month = jun,
day = "27",
language = "English",
series = "Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023",
publisher = "AAAI press",
pages = "7235--7243",
editor = "Brian Williams and Yiling Chen and Jennifer Neville",
booktitle = "AAAI-23 Technical Tracks 6",
}