Abstract
Trophic cascades - the indirect effects of carnivores on plants mediated by herbivores - are common across ecosystems, but their influence on biogeochemical cycles, particularly the terrestrial carbon cycle, are largely unexplored. Here, using a 13C pulse-chase experiment, we demonstrate how trophic structure influences ecosystem carbon dynamics in a meadow system. By manipulating the presence of herbivores and predators, we show that even without an initial change in total plant or herbivore biomass, the cascading effects of predators in this system begin to affect carbon cycling through enhanced carbon fixation by plants. Prolonged cascading effects on plant biomass lead to slowing of carbon loss via ecosystem respiration and reallocation of carbon among plant aboveground and belowground tissues. Consequently, up to 1.4-fold more carbon is retained in plant biomass when carnivores are present compared with when they are absent, owing primarily to greater carbon storage in grass and belowground plant biomass driven largely by predator nonconsumptive (fear) effects on herbivores. Our data highlight the influence that the mere presence of predators, as opposed to direct consumption of herbivores, can have on carbon uptake, allocation, and retention in terrestrial ecosystems.
Original language | English |
---|---|
Pages (from-to) | 11035-11038 |
Number of pages | 4 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 110 |
Issue number | 27 |
DOIs | |
State | Published - 2 Jul 2013 |
Externally published | Yes |
Keywords
- Animal-mediated carbon cycling
- Carbon retention
- Carbon tracer experiment
- Experimental ecosystem ecology
ASJC Scopus subject areas
- General