Tuning nonlinear damping in graphene nanoresonators by parametric–direct internal resonance

Ata Keşkekler, Oriel Shoshani, Martin Lee, Herre S.J. van der Zant, Peter G. Steeneken, Farbod Alijani

Research output: Contribution to journalArticlepeer-review

55 Scopus citations


Mechanical sources of nonlinear damping play a central role in modern physics, from solid-state physics to thermodynamics. The microscopic theory of mechanical dissipation suggests that nonlinear damping of a resonant mode can be strongly enhanced when it is coupled to a vibration mode that is close to twice its resonance frequency. To date, no experimental evidence of this enhancement has been realized. In this letter, we experimentally show that nanoresonators driven into parametric-direct internal resonance provide supporting evidence for the microscopic theory of nonlinear dissipation. By regulating the drive level, we tune the parametric resonance of a graphene nanodrum over a range of 40–70 MHz to reach successive two-to-one internal resonances, leading to a nearly two-fold increase of the nonlinear damping. Our study opens up a route towards utilizing modal interactions and parametric resonance to realize resonators with engineered nonlinear dissipation over wide frequency range.

Original languageEnglish
Article number1099
JournalNature Communications
Issue number1
StatePublished - 1 Dec 2021

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy


Dive into the research topics of 'Tuning nonlinear damping in graphene nanoresonators by parametric–direct internal resonance'. Together they form a unique fingerprint.

Cite this