TY - GEN
T1 - Twenty-Five Comparators Is Optimal When Sorting Nine Inputs (and Twenty-Nine for Ten)
AU - Codish, Michael
AU - Cruz-Filipe, Luis
AU - Frank, Michael
AU - Schneider-Kamp, Peter
N1 - Publisher Copyright:
© 2014 IEEE.
PY - 2014/12/12
Y1 - 2014/12/12
N2 - This paper describes a computer-assisted non-existence proof of 9-input sorting networks consisting of 24 comparators, hence showing that the 25-comparator sorting network found by Floyd in 1964 is optimal. As a corollary, we obtain that the 29-comparator network found by Waksman in 1969 is optimal when sorting 10 inputs. This closes the two smallest open instances of the optimal-size sorting network problem, which have been open since the results of Floyd and Knuth from 1966 proving optimality for sorting networks of up to 8 inputs. The proof involves a combination of two methodologies: one based on exploiting the abundance of symmetries in sorting networks, and the other based on an encoding of the problem to that of satisfiability of propositional logic. We illustrate that, while each of these can single-handedly solve smaller instances of the problem, it is their combination that leads to the more efficient solution that scales to handle 9 inputs.
AB - This paper describes a computer-assisted non-existence proof of 9-input sorting networks consisting of 24 comparators, hence showing that the 25-comparator sorting network found by Floyd in 1964 is optimal. As a corollary, we obtain that the 29-comparator network found by Waksman in 1969 is optimal when sorting 10 inputs. This closes the two smallest open instances of the optimal-size sorting network problem, which have been open since the results of Floyd and Knuth from 1966 proving optimality for sorting networks of up to 8 inputs. The proof involves a combination of two methodologies: one based on exploiting the abundance of symmetries in sorting networks, and the other based on an encoding of the problem to that of satisfiability of propositional logic. We illustrate that, while each of these can single-handedly solve smaller instances of the problem, it is their combination that leads to the more efficient solution that scales to handle 9 inputs.
UR - http://www.scopus.com/inward/record.url?scp=84944699903&partnerID=8YFLogxK
U2 - 10.1109/ICTAI.2014.36
DO - 10.1109/ICTAI.2014.36
M3 - Conference contribution
AN - SCOPUS:84944699903
T3 - Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI
SP - 186
EP - 193
BT - Proceedings - 2014 IEEE 26th International Conference on Tools with Artificial Intelligence, ICTAI 2014
PB - Institute of Electrical and Electronics Engineers
T2 - 26th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2014
Y2 - 10 November 2014 through 12 November 2014
ER -